76 resultados para Sahara
Resumo:
Relict dune fields that are found as far south as 14° N in the modern-day African Sahel are testament to equatorward expansions of the Sahara desert during the Late Pleistocene. However, the discontinuous nature of dune records means that abrupt millennial-timescale climate events are not always resolved. High-resolution marine core studies have identified Heinrich stadials as the dustiest periods of the last glacial in West Africa although the spatial evolution of dust export on millennial timescales has so far not been investigated. We use the major-element composition of four high-resolution marine sediment cores to reconstruct the spatial extent of Saharan-dust versus river-sediment input to the continental margin from West Africa over the last 60 ka. This allows us to map the position of the sediment composition corresponding to the Sahara-Sahel boundary. Our records indicate that the Sahara-Sahel boundary reached its most southerly position (13° N) during Heinrich stadials and hence suggest that these were the periods when the sand dunes formed at 14° N on the continent. Heinrich stadials are associated with cold North Atlantic sea surface temperatures which appear to have triggered abrupt increases of aridity and wind strength in the Sahel. Our study illustrates the influence of the Atlantic meridional overturning circulation on the position of the Sahara-Sahel boundary and on global atmospheric dust loading.
Resumo:
Modern carbonate sedimentation takes place on the northern Mauritanian shelf (20°N), where typical tropical components (e.g. hermatypic reefs, calcareous green algae) are absent. Such deposits are reminiscent of extratropical sediment in the geological record. The tropical open shelf of Mauritania is influenced by large siliciclastic dust input and upwelling, highly fertilizing the ocean, as well as strongly limiting the light penetration. In this context, temperature does not appear to be the steering factor of carbonate production. This thesis describes the depositional system of the Golfe d'Arguin off Mauritania and focuses on environmental conditions that control the depositional pattern, in particular carbonate production. The description of this modern analogue provides a tool for paleoenvironmental interpretation of ancient counterparts. The Golfe d'Arguin is a broad shallow shelf comprising extensive shoals (<10 m water depth; i.e. the Banc d'Arguin) on the inner shelf where waters warm up. The sediments collected in water depths between 4 and 600 m are characterized by mixed carbonate and siliciclastic (dust) deposits. They vary from clean coarse-grained, almost pure carbonate loose sediments to siliciclastic-dominated fine-grained sediments. The carbonate content and sediment grain size show a north-south decreasing pattern through the Golfe d'Arguin and are controlled by the hydraulic regime influenced by wind-driven surface currents, swell, and tidal currents. The carbonate grain association is heterozoan. Components include abundant molluscs, foraminifers, and worm tubes, as well as barnacles and echinoderms, elements that are also abundant in extratropical sediments. The spatial distribution of the sedimentary facies of the Golfe d'Arguin does not display a depth zonation but rather a mosaic (i.e. patchy distribution). The depth and climatic signatures of the different sedimentary facies are determined by taxonomic and ecological investigations of the carbonate-secreting biota (molluscs and foraminifers). While certain planktonic foraminifers and molluscs represent upwelling elements, other components (e.g. mollusc and benthic foraminifer taxa) demonstrate the tropical origin of the sediment. The nutrient-rich (and thus also low light-penetration) conditions are reflected in the fact that symbiotic and photosynthetic carbonate-producing organisms (e.g. hermatypic corals) are absent. The Mauritanian deposits represent an environment that is rare in the modern world but might have been more common in the geological past when global temperatures were higher. Taxonomic and ecological studies allow for distinguishing carbonate sediments formed under either tropical high-nutrient or extratropical conditions, thus improving paleoclimate reconstruction.
Resumo:
Two hundred and seventy five mollusc species from the continental shelf off Southern Spanish Sahara (depth: 32-60 m) were identified. Their distribution pattern is strongly influenced by the nature of the bottom (firm substrate, shelter, stability of sediment) rather than other factors at that depth interval. This faunal assemblage shows great affinity to the Mediterranean and Lusitanian faunas, and comprises only few (22 %) exclusively Senegalese and species living south of Senegal.
Resumo:
With a 6-channel integrating nephelometer spectral scattering properties of the atmospheric aerosol have been measured during the third part of the Atlantic Expedition 1969. A meridional cross section of light scattering integrals in the wavelength range 0.475 µm to 0.924 µm was recorded reaching from 10° S to 60° N along 30° W. With a new algorithm the time series of hourly scattering spectra was inverted yielding a first meridional cross section of the median radius of the number size distribution in situ. Three air mass regimes could be distinguished in the course of the experiment, the first one being the extremely clean air of the SE-trade south of the ITC. An abrupt increase in light scattering marked the hemispheric change when the ship entered the NE-trade which was heavily loaded with Sahara dust. North of the trade region the ship sailed through maritime North Atlantic air masses with highly variable light scattering and a slow decrease in median radius with latitude.
Resumo:
Sediment dynamics in limnic, fluvial and marine environments can be assessed by granulometric and rock-magnetic methodologies. While classical grain-size analysis by sieving or settling mainly bears information on composition and transport, the magnetic mineral assemblages reflect to a larger extent the petrology and weathering conditions in the sediment source areas. Here, we combine both methods to investigate Late Quaternary marine sediments from five cores along a transect across the continental slope off Senegal. This region near the modern summer Intertropical Convergence Zone is particularly sensitive to climate change and receives sediments from several aeolian, fluvial and marine sources. From each of the investigated five GeoB sediment cores (494-2956 m water depth) two time slices were processed which represent contrasting climatic conditions: the arid Heinrich Stadial 1 (~ 15 kyr BP) and the humid Mid Holocene (~ 6 kyr BP). Each sediment sample was split into 16 grain-size fractions ranging from 1.6 to 500 µm. Concentration and grain-size indicative magnetic parameters (susceptibility, SIRM, HIRM, ARM and ARM/IRM) were determined at room temperature for each of these fractions. The joint consideration of whole sediment and magnetic mineral grain-size distributions allows to address several important issues: (i) distinction of two aeolian sediment fractions, one carried by the north-easterly trade winds (40-63 µm) and the other by the overlying easterly Harmattan wind (10-20 µm) as well as a fluvial fraction assigned to the Senegal River (< 10 µm); (ii) identification of three terrigenous sediment source areas: southern Sahara and Sahel dust (low fine-grained magnetite amounts and a comparatively high haematite content), dust from Senegalese coastal dunes (intermediate fine-grained magnetite and haematite contents) and soils from the upper reaches of the Senegal River (high fine-grained magnetite content); (iii) detection of partial diagenetic dissolution of fine magnetite particles as a function of organic input and shore distance; (iv) analysis of magnetic properties of marine carbonates dominating the grain-size fractions 63-500 µm.
Resumo:
We present a hydrologic reconstruction of the Sahara-Sahel transition, covering the complete last glacial cycle (130 ka), based on a combination of plant-wax-specific hydrogen (dD) and carbon isotopes (d13C). The dD and d13C signatures of long-chain n-alkanes from ODP Site 659 off NW Africa reveal a significant anti-correlation. Complementary to published pollen data, we infer that this plant-wax signal reflects sensitive responses of the vegetation cover to precipitation changes in the Sahel region, as well as varying contributions from biomes north of the Sahara (C3 domain) by North-East Trade Winds (NETW). During arid phases, especially the northern parts of the Sahel likely experienced crucial water stress, which resulted in a pronounced contraction of the vegetation cover, thus reducing the amount of C4 plant waxes from the region. The increase in NETW strength during dry periods further promoted a more pronounced C3-plant-wax signal derived from the North African C3 plant domain. During humid periods, the C4-dominated Sahelian environments spread northward into the Saharan realm, in association with lower NETW inputs of C3 plant waxes. Arid-humid cycles deduced from plant-wax dD are in accordance with concomitant changes in weathering intensity reflected in varying major element distributions. Environmental shifts are generally linked to periods with large fluctuations in Northern Hemisphere summer insolation. During Marine Isotope Stages 2 and 3, when insolation variability was low, coupling of the hydrologic regime to alkenone-based estimates of NE Atlantic sea-surface temperatures becomes apparent.
Resumo:
Five Ocean Drilling Program sites (657-661), which form a north-south transect off the western periphery of the Sahara, were selected to measure the long-term history of Saharan/Sahelian dust flux and fluvial sediment discharge and the fluxes of marine CaCO3 and opal over the last 8 m.y. Sites 658 and 659 served for high-resolution studies, and Sites 657, 660, and 661 for insights into the spatial patterns of dust flux. The nearshore mean flux of opal off Cap Blanc (21 °N) showed an abrupt increase about 3 Ma that appears to reflect the main onset of coastal upwelling fertility and enhanced trade winds. At the same time, the input of river-borne clay strongly decreased, suggesting a dry up of the central Saharan rivers. Later, marked short-lived spikes of clay and opal may indicate ongoing ephemeral pulses of fluvial runoff linked to peak interglacial stages. Given the zonal dust discharge centered near 18 °N at Site 659, the aridification of the south Sahara and Sahel increased in several steps: at 4.6, 4.3, and especially at 4.0, 3.6, and 2.1 Ma, and again, at 0.8 Ma. The late Miocene and earliest Pliocene were humid. Although the central and north Saharan climate appears to be linked to the glaciation history of the Northern Hemisphere, the long-term aridification further south followed a different schedule. The spatial distribution of quartz accumulation suggests that the dust outbreaks linked to the Intertropical Convergence Zone during summer did not shift in latitude back to 4.0 Ma, at least. The short-term variations of dust output over the last 0.5 m.y. followed orbital scale pulses with a strong precessional signal, showing a link of Sahelian humidity changes to the variation of sea-surface temperature and evaporation in the tropical Atlantic.
Resumo:
The influence of atmospheric dust on climate and biogeochemical cycles in the oceans is well understood but poorly quantified. Glacial atmospheric dust loads were generally greater than those during the Holocene, as shown, for example, by the covariation of dust fluxes in the Equatorial Pacific and Antarctic ice cores. Nevertheless, it remains unclear whether these increases in dust flux were associated with changes in sources of dust, which would in turn suggest variations in wind patterns, climate or paleo-environment. Such questions can be answered using radiogenic isotope tracers of dust provenance. Here, we present a 160-kyr high-precision lead isotope time-series of dust input to the Eastern Equatorial Pacific (EEP) from core ODP Leg 138, Site 849 (0°11.59' N, 110°31.18' W). The Pb isotope record, combined with Nd isotope data, rules out contributions from Northern Hemisphere dust sources, north of the Intertropical Convergence Zone, such as Asia or North Africa/Sahara; similarly, eolian sources in Australia, Central America, the Northern Andes and Patagonia appear insignificant based upon the radiogenic isotope data. Fluctuations in Pb isotope ratios throughout the last 160 kyr show, instead, that South America remained the prevailing source of dusts to the EEP. There are two distinct South American Pb isotope end-members, constrained to be located in the south Central Volcanic Zone (CVZ, 22° S - 27.5° S) and the South Volcanic Zone (SVZ, 33° S - 43° S), with the former most likely originating in the Atacama Desert. Dust availability in the SVZ appears to be related to the weathering of volcanic deposits and the development of ash-derived Andosols, and influenced by local factors that might include vegetation cover. Variations in the dust fluxes from the two sources are in phase with both the dust flux and temperature records from Antarctican ice cores. We show that the forcing of dust provenance over time in the EEP overall is influenced by high-southerly-latitude climate conditions, leading to changes in the latitudinal position and strength of the South Westerlies as well as the coastal winds that blow northward along the Chilean margin. The net result is a modulation of dust emission from the Atacama Desert and the SVZ via a northward migration of the South Westerlies during cold periods and southward retreat during glacial terminations.