143 resultados para Roman Iron Age


Relevância:

100.00% 100.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A long-running interdisciplinary research project on the development of landscape, prehistoric habitation and the history of vegetation within a "siedlungskammer" (limited habitation areal from neolithic to modern times has been carried out in the NW German lowlands, The siedlungskammer Flögeln is situated between the rivers Weser and EIbe and comprises about 23.5 km^2. It is an isolated pleistocene area surrounded by bogs, the soils consisting mainly of poor sands. In this siedlungskammer large-seale archaeological excavations and mappings have been performed, parallel to pedological, historical and above all pollen analytical investigations. The aim of the project is to record the individual phases in time, to delimit the respective settlement areas and to reconstruct the conditions of life and economy for each time period. A dense network of 10 pollen diagrams has been constructed. Several of them derive from the marginal area and from the centre of the large raised bog north of the siedlungskammer. These diagrams reflect the history of vegetation and habitation of a large region; due to the large pollen source area the habitation phases in the diagrams are poorly defined. Even in the utmost marginal diagram of this woodless bog, a great village with adjoining fields, situated only 100 m away from it, is registered with only low values of anthropogenic indicators. In contrast to this, the numerous pollen diagrams from kettle-hole bogs inside the siedlungskammer yield an exact picture of the habitation of the siedlungskammer and their individual parts. Early traces of habitation can be identified in the pollen diagram soon after the elm decline (around 5190 BP). Some time later in the middle neolithic period there follows a marked habitation phase, which starts between 4500 and 4400 BP and reflects the immigration of the trichterbecher culture. It corresponds to the landnam phase of Iversen in Denmark and begins with a sharp decline of the pollen curves of lime and oak, followed by the increase of anthropogenic indicators pointing to arable and pastural farming. High values of wild grasses and Calluna witness extensive forest grazing. This middle to late neolithic habitation is also registered archaeologically by settlements and numerous graves. After low human activity during Bronze Age and Older Iron Age times the archaeological and pollen analytical records of Roman and Migration periods is again very strong. This is followed by a gap in habitation during the 6th and 7th centuries and afterwards in the western part of the siedlungskammer from about 700 AD until the 14th century by the activity of the medieval village of Dalem, that was also excavated and whose fields were recorded by phosphate mapping to a size of 117 hectares. This medieval settlement phase is marked by much cereal cultivation (mainly rye). The dense network of pollen diagrams offers an opportunity to register the dispersion of the anthropogenic indicators from the areas of settlement to different distances and thus to obtain quantitative clues for the assessment of these anthropogenic indicators in pollen diagrams. In fig. 4 the reflection of the neolithic culture in the kettle-hole bogs and the large raised bog is shown in 3 phases: a) pre landnam, b) TRB-landnam, c) post landnam. Among arboreal pollen the reaction of Quercus is sharp close to the settlement but is not found at more distant profiles, whilst in contrast to this Tilia shows a significant decline even far away from the settlements. The record of most anthropogenic indicators outside the habitation area is very low, in particular cereal pollen is poorly dispersed; much more certain as an indicator for habitation (also for arable farming!) is Plantago lanceolata. A strong increase of wild grasses (partly Calluna aswell) some distance from the habitation areas indicates far reaching forest grazing. Fig. 5 illustrates the reflection of the anthropogenie indicators from the medieval village Dalem. In this instance the field area could be mapped exactly using phosphate investigations, and it has been possible to indicate the precise distances of the profile sites from the medieval fields. Here also, there is a clear correlation between decreasing anthropogenic indicators and increasing distance. In a kettle-hole bog (FLH) a distance of 3000 m away this marked settlement phase is not registered. The contrast between the pollen diagrams SWK and FLH (fig. 2 + 3, enclosure), illustrates the strong differences between diagrams from kettlehole bogs close to and distant from the settlements, for the neolithic as well as for the medieval period. On the basis of the examples presented here, implications concerning the interpretation of pollen diagrams with respect to habitation phases are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high-resolution sedimentological and geochemical study was performed on a 20 m long core from the alpine Lake Anterne (2063 m a.s.l., NW French Alps) spanning the last 10 ka. Sedimentation is mainly of minerogenic origin. The organic matter quantity (TOC%) as well as its quality (hydrogen (HI) and oxygen (OI) indices) both indicate the progressive onset and subsequent stabilization of vegetation cover in the catchment from 9950 to 5550 cal. BP. During this phase, the pedogenic process of carbonate dissolution is marked by a decrease in the calcium content in the sediment record. Between 7850 and 5550 cal. BP, very low manganese concentrations suggest anoxic conditions in the bottom-water of Lake Anterne. These are caused by a relatively high organic matter (terrestrial and lacustrine) content, a low flood frequency and longer summer stratification triggered by warmer conditions. From 5550 cal. BP, a decrease in TOC, stabilization of HI and higher sedimentation rates together reflect increased erosion rates of leptosols and developed soils, probably due to a colder and wetter climate. Then, three periods of important soil destabilization are marked by an increased frequency and thickness of flood deposits during the Bronze Age and by increases in topsoil erosion relative to leptosols (HI increases) during the late Iron Age/Roman period and the Medieval periods. These periods are also characterized by higher sedimentation rates. According to palynological data, human impact (deforestation and/or pasturing activity) probably triggered these periods of increased soil erosion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A total of 51,074 archaeological sites from the early Neolithic to the early Iron Age (c. 8000-500 BC), with a spatial extent covering most regions of China (c. 73-131°E and c. 20-53°N), were analysed over space and time in this study. Site maps of 25 Chinese provinces, autonomous regions and municipalities, published in the series 'Atlas of Chinese Cultural Relics', were used to extract, digitalise and correlate its archaeological data. The data were, in turn, entered into a database using a self-developed mapping software that makes the data, in a dynamic way, analysable as a contribution to various scientific questions, such as population growth and migrations, spread of agriculture and changes in subsistence strategies. The results clearly show asynchronous patterns of changes between the northern and southern parts of China (i.e. north and south of the Yangtze River, respectively) but also within these macro-regions. In the northern part of China (i.e. along the Yellow River and its tributaries and in the Xiliao River basin), the first noticeable increase in the concentration of Neolithic sites occurred between c. 5000 and 4000 BC; however, highest site concentrations were reached between c. 2000 and 500 BC. Our analysis shows a radical north-eastern shift of high site-density clusters (over 50 sites per 100 * 100 km grid cell) from the Wei and middle/lower Yellow Rivers to the Liao River system sometime between 2350 BC and 1750 BC. This shift is hypothetically discussed in the context of the incorporation of West Asian domesticated animals and plants into the existing northern Chinese agricultural system. In the southern part of China, archaeological sites do not show a noticeable increase in the absolute number of sites until after c. 1500 BC, reaching a maximum around 1000 BC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigates the landscape evolution and soil development in the loess area near Regensburg between approximately 6000-2000 yr BP (radiocarbon years), Eastern Bavaria. The focus is on the question how man and climate influenced landscape evolution and what their relative significance was. The theoretical background concerning the factors that controlled prehistoric soil erosion in Middle Europe is summarized with respect to rainfall intensity and distribution, pedogenesis, Pleistocene relief, and prehistoric farming. Colluvial deposits , flood loams, and soils were studied at ten different and representative sites that served as archives of their respective palaeoenvironments. Geomorphological, sedimentological, and pedological methods were applied. According to the findings presented here, there was a high asynchronity of landscape evolution in the investigation area, which was due to prehistoric land-use patterns. Prehistoric land use and settlement caused highly difIerenciated phases of morphodynamic activity and stability in time and space. These are documented at the single catenas ofeach site. In general, Pleistocene relief was substantially lowered. At the same time smaller landforms such as dells and minor asymmetric valleys filled up and strongly transformed. However, there were short phases at many sites, forming short lived linear erosion features ('Runsen'), resulting from exceptional rainfalls. These forms are results of single events without showing regional trends. Generally, the onset of the sedimentation of colluvial deposits took place much earlier (usually 3500 yr BP (radiocarbon) and younger) than the formation of flood loams. Thus, the deposition of flood loams in the Kleine Laaber river valley started mainly as a consequence of iron age farming only at around 2500 yr BP (radiocarbon). A cascade system explains the different ages of colluvial deposits and flood loams: as a result of prehistoric land use, dells and other minor Pleistocene landforms were filled with colluvial sediments. After the filling of these primary sediment traps , eroded material was transported into flood plains, thus forming flood loams. But at the moment we cannot quantify the extent ofprehistoric soil erosion in the investigation area. The three factors that controlled the prehistoric Iandscapc evolution in the Ioess area near Regensburg are as follows: 1. The transformation from a natural to a prehistoric cultural landscape was the most important factor: A landscape with stable relief was changed into a highly morphodynamic one with soil erosion as the dominant process of this change. 2. The sediment traps of the pre-anthropogenic relief determined where the material originated from soil erosion was deposited: either sedimentation took place on the slopes or the filled sediment traps of the slopes rendered flood loam formation possible. Climatic influence of any importance can only be documented as the result of land use in connection with singular and/or statistic events of heavy rainfalls. Without human impact, no significant change in the Holocene landscape would have been possible.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Annually laminated (varved) lake sediments with intercalated detrital layers resulting from sedimentary input by runoff events are ideal archives to establish precisely dated records of past extreme runoff events. In this study, the mid- to late Holocene varved sediments of Lake Mondsee (Upper Austria) were analysed by combining sedimentological, geophysical and geochemical methods. This approach allows to distinguish two types of detrital layers related to different types of extreme runoff events (floods and debris flows) and to detect changes in flood activity during the last 7100 years. In total, 271 flood and 47 debris flow layers, deposited during spring and summer, were identified, which cluster in 18 main flood episodes (FE 1-18) with durations of 30-50 years each. These main flood periods occurred during the Late Neolithic (7100-7050 vyr BP and 6470-4450 vyr BP), the late Bronze Age and the early Iron Age (3300-3250 and 2800-2750 vyr BP), the late Iron Age (2050-2000 vyr BP), throughout the Dark Ages Cold Period (1500-1200 vyr BP), and at the end of the Medieval Warm Period and the Little Ice Age (810-430 vyr BP). Summer flood episodes in Lake Mondsee are generally more abundant during the last 1500 years, often coinciding with major advances of alpine glaciers. Prior to 1500 vyr BP, spring/summer floods and debris flows are generally less frequent, indicating a lower number of intense rainfall events that triggered erosion. In comparison with the increase of late Holocene flood activity in western and northwestern (NW) Europe, commencing already as early as 2800 yr BP, the hydro-meteorological shift in the Lake Mondsee region occurred much later. These time lags in the onset of increased hydrological activity might be either due to regional differences in atmospheric circulation pattern or to the sensitivity of the individual flood archives. The Lake Mondsee sediments represent the first precisely dated and several millennia long summer flood record for the northeastern (NE) Alps, a key region at the climatic boundary of Atlantic, Mediterranean and East European air masses aiding a better understanding of regional and seasonal peculiarities of flood occurrence under changing climate conditions.