939 resultados para Rawson-MacMillan Sub-Arctic Expedition
Resumo:
Aim: Models project that climate warming will cause the tree line to move to higher elevations in alpine areas and more northerly latitudes in Arctic environments. We aimed to document changes or stability of the tree line in a sub-Arctic model area at different temporal and spatial scales, and particularly to clarify the ambiguity that currently exists about tree line dynamics and their causes. Location: The study was conducted in the Tornetrask area in northern Sweden where climate warmed by 2.5 °C between 1913 and 2006. Mountain birch (Betula pubescens ssp. czerepanovii) sets the alpine tree line. Methods: We used repeat photography, dendrochronological analysis, field observations along elevational transects and historical documents to study tree line dynamics. Results: Since 1912, only four out of eight tree line sites had advanced: on average the tree line had shifted 24 m upslope (+0.2 m/year assuming linear shifts). Maximum tree line advance was +145 m (+1.5 m/year in elevation and +2.7 m/year in actual distance), whereas maximum retreat was 120 m downslope. Counter-intuitively, tree line advance was most pronounced during the cooler late 1960s and 1970s. Tree establishment and tree line advance were significantly correlated with periods of low reindeer (Rangifer tarandus) population numbers. A decreased anthropozoogenic impact since the early 20th century was found to be the main factor shaping the current tree line ecotone and its dynamics. In addition, episodic disturbances by moth outbreaks and geomorphological processes resulted in descent and long-term stability of the tree line position, respectively. Main conclusions: In contrast to what is generally stated in the literature, this study shows that in a period of climate warming, disturbance may not only determine when tree line advance will occur but if tree line advance will occur at all. In the case of non-climatic climax tree lines, such as those in our study area, both climate-driven model projections of future tree line positions and the use of the tree line position for bioclimatic monitoring should be used with caution.
Resumo:
The Cenozoic ice-rafted debris (IRD) history of the central Arctic is reconstructed utilizing the terrigenous coarse sand fraction in IODP 302 cores from 0 to 273 meters composite depth. This Holocene - middle Eocene quantitative record of terrigenous sand accumulation on the Lomonosov Ridge, along with qualitative information on grain texture and composition, confirms the interpretation that ice initiation (sea ice and glacial ice) occurred ~46 Ma in the Arctic, and provides a long-term pattern of Arctic ice expansion and decay since the middle Eocene. IRD mass accumulation rates range from 0 to 0.13 g/cm2/ka in the middle Eocene and from 0 to 0.36 g/cm2/ka in the Neogene. IRD mass accumulation rate (MAR) maxima in the Miocene and Pliocene cooccur with either glacial initiation or intensification in the sub-Arctic. The 46.25 Ma IRD onset in the central Arctic slightly precedes the earliest evidence of ice in the Antarctic, and compares in timing with a >1000 ppm decrease in atmospheric concentrations of CO2. The decline of pCO2 in the middle Eocene may have driven both poles across the temperature threshold that enabled the nucleation of glaciers on land and partial freezing of the surface Arctic Ocean, especially during times of low insolation.
Resumo:
Two modal size groups of sexually mature Arctic charr (Salvelinus alpinus) differing in shape and found at different depths in Lake Aigneau in the Canadian sub-Arctic are described and tested for genetic and ecological differentiation. Forms consisted of a small littoral resident, mean size 21.7 cm, and a large profundal resident, mean size 53.9 cm. Mitochondrial DNA analysis indicated that seven of eight haplotypes were diagnostic for either the littoral or profundal fish, with 66.6% of the variation being found within form groupings. Pairwise tests of microsatellite data indicated significant differences in nine of 12 loci and a significant difference between the forms across all tested loci. Molecular variation was partitioned to 84.1% within and 15.9% between forms and suggestive of either restricted interbreeding over time or different allopatric origins. Stable isotope signatures were also significantly different, with the profundal fish having higher d13C and d15N values than the littoral fish. Overlap and separation, respectively, in the range of form d13C and d15N signatures indicated that carbon was obtained from similar sources, but that forms fed at different trophic levels. Littoral fish relied on aquatic insects, predominantly chironomids. Profundal fish were largely piscivorous, including cannibalism. Predominantly empty stomachs and low per cent nitrogen muscle-tissue composition among profundal fish further indicated that the feeding activity was limited to the winter when ice-cover increases the density of available prey at depth. Results provide evidence of significant differences between the modal groups, with origins in both genetics and ecology.
Resumo:
The study on invertebrate communities in East- and West-Greenland shelf waters was embedded in a fisheries survey carried out during the 379th expedition of the German fisheries vessel Walther Herwig III of the Thünen Institute of Sea Fisheries, Hamburg, Germany. The aim of the study was a coarse classification of the bycatch comprising macrobenthic organisms. On the one hand the marine ecosystem of this area provides food for commercially valuable fish stocks and plays, potentially an important role in the remineralisation of nutrients. On the other hand it experiences stress by traditional bottom trawling as well as anthropogenic and natural climate variability. As a consequence the study can provide a baseline to detect further changes in the composition of this component of a sub-arctic marine ecosystem.
Resumo:
Pollen productivity estimates (PPE) are used to quantitatively reconstruct variations in vegetation within a specific distance of the sampled pollen archive. Here, for the first time, PPEs from Siberia are presented. The study area (Khatanga region, Krasnoyarsk territory, Russia) is located in the Siberian Sub-arctic where Larixis the sole forest-line forming tree taxon. Pollen spectra from two different sedimentary environments, namely terrestrial mosses (n=16) and lakes (n=15, median radius ~100 m) and their surrounding vegetation were investigated to extract PPEs. Our results indicate some differences in pollen spectra between moss and lake pollen. Larix and Cyperaceae for example obtained higher representation in the lacustrine than in terrestrial moss samples. This highlights that in calibration studies modern and fossil dataset should be of similar sedimentary origin. The results of the Extended R-Value model were applied to assess the relevant source area of pollen (RSAP) and to calculate the PPEs for both datasets. As expected, the RSAP of the moss samples was very small (about 10 m) compared to the lacustrine samples (about 25 km). Calculation of PPEs for the six most common taxa yielded generally similar results for both datasets. Relative to Poaceae (reference taxon, PPE=1) Betula nana-type (PPEmoss: 1.8, PPElake: 1.8) and Alnusfruticosa-type (PPEmoss: 6.4, PPElake: 2.9) were overrepresented while Cyperaceae (PPEmoss: 0.5, PPElake: 0.1), Ericaceae (PPEmoss: 0.3, PPElake <0.01), Salix (PPEmoss: 0.03, PPElake <0.01) and Larix (PPEmoss <0.01, PPElake: 0.2) were under-represented in the pollen spectra compared to the vegetation in the RSAP. The estimation for the dominant tree in the region, Larixgmelinii, is the first published result for this species, but need to be considered very preliminary. The inferred sequence from over- to under-representation is mostly consistent with results from Europe; however, still the absolute values show some differences. Gathering vegetation data was limited by flowering season and low resolute satellite imagery and accessibility of the remote location of our study area. Therefore, our estimate may serve as first reference to strengthen future vegetation reconstructions in this climate-sensitive region.
Resumo:
Sediment proxy data from the Norwegian, Greenland, and Iceland seas (Nordic seas) are presented to evaluate surface water temperature (SST) differences between Holocene and Eemian times and to deduce from these data the particular mode of surface water circulation. Records from planktic foraminiferal assemblages, CaCO3 content, oxygen isotopes of foraminifera, and iceberg-rafted debris form the main basis of interpretation. All results indicate for the Eemian comparatively cooler northern Nordic seas than for the Holocene due to a reduction in the northwardly flow of Atlantic surface water towards Fram Strait and the Arctic Ocean. Therefore, the cold polar water flow from the Arctic Ocean was less influencial in the southwestern Nordic seas during this time. As can be further deduced from the Eemian data, slightly higher Eemian SSTs are interpreted for the western Iceland Sea compared to the Norwegian Sea (ca. south of 70°N). This Eemian situation is in contrast to the Holocene when the main mass of warmest Atlantic surface water flows along the Norwegian continental margin northwards and into the Arctic Ocean. Thus, a moderate northwardly decrease in SST is observed in the eastern Nordic seas for this time, causing a meridional transfer in ocean heat. Due to this distribution in SSTs the Holocene is dominated by a meridional circulation pattern. The interpretation of the Eemian data imply a dominantly zonal surface water circulation with a steep meridional gradient in SSTs.
Resumo:
Records of the spatial and temporal variability of Arctic Ocean sea ice are of significance for understanding the causes of the dramatic decrease in Arctic sea-ice cover of recent years. In this context, the newly developed sea-ice proxy IP25, a mono-unsaturated highly branched isoprenoid alkene with 25 carbon atoms biosynthesized specifically by sea-ice associated diatoms and only found in Arctic and sub-Arctic marine sediments, has been used to reconstruct the recent spatial sea-ice distribution. The phytoplankton biomarkers 24S-brassicasterol and dinosterol were determined alongside IP25 to distinguish ice-free or permanent ice conditions, and to estimate the sea-ice conditions semi-quantitatively by means of the phytoplankton-IP25 index (PIP25). Within our study, for the first time a comprehensive data set of these biomarkers was produced using fresh and deep-frozen surface sediment samples from the Central Arctic Ocean proper (>80°N latitude) characterised by a permanent ice cover today and recently obtained surface sediment samples from the Chukchi Plateau/Basin partly covered by perennial sea ice. In addition, published and new data from other Arctic and sub-Arctic regions were added to generate overview distribution maps of IP25 and phytoplankton biomarkers across major parts of the modern Arctic Ocean. These comprehensive biomarker data indicate perennial sea-ice cover in the Central Arctic, ice-free conditions in the Barents Sea and variable sea-ice situations in other marginal seas. The low but more than zero values of biomarkers in the Central Arctic supported the low in-situ productivity there. The PIP25 index values reflect modern sea-ice conditions better than IP25 alone and show a positive correlation with spring/summer sea ice. When calculating and interpreting PIP25 index as a (semi-quantitative) proxy for reconstructions of present and past Arctic sea-ice conditions from different Arctic/sub-Arctic areas, information of the source of phytoplankton biomarkers and the possible presence of allochthonous biomarkers is needed, and the records of the individual biomarkers always should be considered as well.
Resumo:
A short sediment core from a local depression forming an intra basin on the Lomonosov Ridge, was retrieved during the Healy-Oden Trans-Arctic Expedition 2005 (HOTRAX). It contains a record of the Marine Isotope Stages (MIS) 1-3 showing exceptionally high abundances of calcareous microfossils during parts of MIS 3. Based on radiocarbon dating, linear sedimentation rates of 7-9 cm/ka persist during the last deglaciation. The Last Glacial Maximum (LGM) is partly characterized by a hiatus. Planktic foraminiferal abundance variations of Neogloboquadrina pachyderma sinistral and calcareous nannofossils reflect changes in Arctic Ocean summer sea ice coverage and probably inflow of subpolar North Atlantic water. Calibration of the radiocarbon ages, using modeled reservoir corrections from previous studies and the microfossil abundance record of the studied core, results in marine reservoir ages of 1400 years or more, at least during the last deglaciation. Paired benthic-planktic radiocarbon dated foraminiferal samples indicate a slow decrease in age difference between surface and bottom waters from the Lateglacial to the Holocene, suggesting circulation and ventilation changes.