231 resultados para Potomac River Estuary--Maps, Manuscript.
(Table 5) Concentrations of dissolved nutrients in Button Bay and the Churchill River estuary region
Resumo:
Data are presented on concentrations of aliphatic and polycyclic aromatic hydrocarbons (AHC and PAH) in interstitial waters and bottom sediments of the Kara Sea compared to distribution of particulate matter and organic carbon. It was found that AHC concentrations within the water mass (aver. 16 µg/l) are mainly formed by natural processes. Distribution of AHC represents variability of hydrological and sedimentation processes in different regions of the sea. The widest ranges of the concentrations occurred in the Obskaya Guba - Kara Sea section: in water (10-310 µg/l for AHC and 0.4-7.2 ng/l for PAH) and in the surface layer of the bottom sediments (8-42 µg/l for AHC and 9-94 ng/g for PAH). Differentiation of hydrocarbons (HC) in different media follows regularities typical for marginal filters; therefore no oil and pyrogenic compounds are supplied to the open sea. In sediments contents of HC depend on variations in redox conditions in sediments and on their composition.
Resumo:
Based on grain-size, mineralogical and chemical analyses of samples collected in cruises of R/V Ekolog (Institute of Northern Water Problems, Karelian Research Centre of RAS, Petrozavodsk) in 2001 and 2003 regularities of chemical element distribution in surface layer bottom sediments of the Kem' River Estuary in the White Sea were studied. For some toxic elements labile and refractory forms were determined. Correlation analysis was carried out and ratios Me/Al were calculated as proxies of terrigenous contribution. Distribution of such elements as Fe, Mn, Zn, Cr, Ti was revealed to be influenced by natural factors, mainly by grain size composition of bottom sediments. These metals have a tendency for accumulation in fine-grained sediments with elevated organic carbon contents. Distribution of Ni is different from one of Fe, Mn, Zn, Cr, Ti. An assumption was made that these distinctions were caused by anthropogenic influence.
Resumo:
Biogeochemical behavior of a group of heavy metals and metalloids in water (including their dissolved and suspended particulate forms), bottom sediments, and zoobenthos was studied in the Ob River estuary (Obskaya Guba) - Kara Sea section on the basis of data obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September-October 2007. Changes in ratios of dissolved and particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and As were shown, as well as growth of adsorbed fractions of the elements in near-bottom suspended matter under mixing of riverine and marine waters. Features of chemical element accumulation in typical benthic organisms of the Obskaya Guba and the Kara Sea were revealed, and their concentrating factors were calculated based on specific conditions of the environment. It was shown that shells of bivalves possessing higher biomass compared to other groups of organisms in the Obskaya Guba play an important role in deposition of heavy metals. In the Obskaya Guba mollusks accumulate Cd and Pb at the background level, whereas Cu and Zn contents appear to be higher than the background level.
Resumo:
Heavy contaminant load released into the Northern Dvina River during flooding increased the concentrations of aliphatic (AHC) and polcyclic aromatic (PAH) hydrocarbons in water and bottom sediments. The composition of hydrocarbons was different from that of the summer low flow season. The concentrations of dissolved and particulate AHC ranged from 12 to 106 and from 192 to 599 µg/l, respectively, and bottom sediments contained from 26.2 to 329 µg/g AHC and 4 to 1785 ng/g PAH. As the transformation of AHC occurred at low spring temperatures, the alkane composition was shown to be dominated by terrigenous compounds, whereas more stable PAH showed elevated contents of petrogenic and pyrogenic compounds. It was also shown that the Northern Dvina-Dvina Bay geochemical barrier prevents contaminant input into the White Sea, i.e., acts as a marginal filter.
Resumo:
A conceptual scheme for the transition from winter to spring is developed for a small Arctic estuary (Churchill River, Hudson Bay) using hydrological, meteorological and oceanographic data together with models of the landfast ice. Observations within the Churchill River estuary and away from the direct influence of the river plume (Button Bay), between March and May 2005, show that both sea ice (production and melt) and river water influence the region's freshwater budget. In Button Bay, ice production in the flaw lead or polynya of NW Hudson Bay result in salinization through winter until the end of March, followed by a gradual freshening of the water column through April-May. In the Churchill Estuary, conditions varied abruptly throughout winter-spring depending on the physical interaction among river discharge, the seasonal landfast ice, and the rubble zone along the seaward margin of the landfast ice. Until late May, the rubble zone partially impounded river discharge, influencing the surface salinity, stratification, flushing time, and distribution and abundance of nutrients in the estuary. The river discharge, in turn, advanced and enhanced sea ice ablation in the estuary by delivering sensible heat. Weak stratification, the supply of riverine nitrogen and silicate, and a relatively long flushing time (~6 days) in the period preceding melt may have briefly favoured phytoplankton production in the estuary when conditions were still poor in the surrounding coastal environment. However, in late May, the peak flow and breakdown of the ice-rubble zone around the estuary brought abrupt changes, including increased stratification and turbidity, reduced marine and freshwater nutrient supply, a shorter flushing time, and the release of the freshwater pool into the interior ocean. These conditions suppressed phytoplankton productivity while enhancing the inventory of particulate organic matter delivered by the river. The physical and biological changes observed in this study highlight the variability and instability of small frozen estuaries during winter-spring transition, which implies sensitivity to climate change.