335 resultados para Polarity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on amounts of various functional groups, i.e. aldehyde, acid, ester, alcohol, thiol and aromatic groups in several fractions of low-polarity dissolved organic matter are presented. An assumption that this organic matter is part of the lipid fraction is not confirmed. Amount of aromatic compounds in waters of the Northwest Indian Ocean is estimated to be about 1000 times higher than quantity of aromatic hydrocarbons discharged into the ocean each year in petroleum and petroleum products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The full suite of magnetic polarity chrons from Subchron M''-2r'' (early Albian) through Chron C13r (latest Eocene) were resolved at one or more Ocean Drilling Program sites on the Blake Nose salient of the Florida continental margin. These sediments preserve diverse assemblages of calcareous and siliceous microfossils; therefore, the composite suite provides a reference section for high-resolution correlation of biostratigraphic datums to magnetic polarity chrons of the Late Cretaceous and Paleogene. Relative condensation or absence of polarity zones at different sites along the transect enhance the recognition and dating of depositional sequences and unconformities within the margin succession. A stable paleolatitude of ~25°N was maintained from the late Aptian through Eocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At Ocean Drilling Program (ODP) Site 1090 (subantarctic South Atlantic), benthic foraminiferal stable isotope data (from Cibicidoides and Oridorsalis) span the late Oligocene through early Miocene (~24-16 Ma) at a temporal resolution of ~5 ky. Over the same interval, a magnetic polarity stratigraphy can be unequivocally correlated to the geomagnetic polarity time scale (GPTS), thereby providing direct correlation of the isotope record to the GPTS. In an initial age model, we use the newly derived age of the Oligocene/Miocene (O/M) boundary of 23.0 Ma of Shackleton et al. (2000, doi:10.1130/0091-7613(2000)28<447:ACAFTO>2.0.CO;2), revised to the new astronomical calculation (La2003) of Laskar et al (2004, doi:10.1016/j.icarus.2004.04.005) to recalculate the spline ages of Cande and Kent (1995, doi:10.1029/94JB03098). We then tune the Site 1090 dekta18O record to obliquity using La2003. In this manner, we are able to refine the ages of polarity chrons C7n through C5Cn.1n. The new age model is consistent, within one obliquity cycle, with previously tuned ages for polarity chrons C7n through C6Bn from Shackleton et al. (2000) when rescaled to La2003. The results from Site 1090 provide independent evidence for the revised age of the Oligocene/Miocene boundary of 23.0 Ma. For early Miocene polarity chrons C6AAr through C5Cn, our obliquity-scale age model is the first to allow a direct calibration to the GPTS. The new ages are generally within one obliquity cycle of those obtained by rescaling the Cande and Kent (1995) interpolation using the new age of the O/M boundary (23.0 Ma) and the same middle Miocene control point (14.8 Ma) used by Cande and Kent (1995).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper contains magnetobiostratigraphic correlation charts for each of the four sites occupied during DSDP Leg 72. Microfossil zonal boundaries and magnetic polarity determinations for Sites 515 through 518 are summarized in Figures 1 through 4, respectively. Our discussion focuses on the correlations derived for the Paleogene and late Cretaceous (Coniacian-Maestrichtian) of Site 516, because of the value of this site as a stratigraphic reference section for the South Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two records of the geomagnetic polarity transition at the beginning of the Jaramillo Subchron (0.97 Ma) have been obtained from sediments in the equatorial Atlantic (Leg 108, Site 665; 2.95°N, 340.33°E) and Indian (Leg 121, Site 758; 5.38°N, 90.35°E) oceans. Both cores yielded high-quality magnetostratigraphic results; however, the relatively low sedimentation rates, the weak magnetizations, and complex demagnetization behavior of some transitional samples suggest that the record of the transitional field behavior may be less reliable. In addition, variations in grain size preclude reliable paleointensity determinations although the remanence in both cores is apparently dominated by magnetite. Despite these possible complications, the two cores yield transitional paths that are neither far-sided nor near-sided. Together with published records that meet minimum reliability standards, the two equatorial records presented here suggest that the lower Jaramillo transitional field morphology was significantly nonaxisymmetric. The mean normal and reversed inclinations from both cores deviate from the inclination expected from a geocentric axial dipole, as noted in virtually all marine sediment cores. The observed inclinations provide further support for a polarity-dependent nondipole contribution to the time-averaged field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic polarity stratigraphies from ODP Leg 177 'high resolution' sites indicate Brunhes sedimentation rates in the 12-25 cm/kyr range, with a trend of decreasing sedimentation rates with increasing age. Magnetite is the principal remanence-carrying mineral. Downcore alteration of magnetite and authigenic growth of iron sulfides introduces a high coercivity diagenetic remanence carrier (pyrrhotite). The change in pore water sulfate with depth in the sediment tends to be in step with the decrease in magnetization intensity, indicating the link between sulfate reduction and magnetite dissolution. Shipboard pass-through magnetometer data are generally very noisy due to a combination of weak magnetization intensities, drilling-related core deformation, and the influence of authigenic iron sulfides. Post-cruise progressive demagnetization of discrete samples aids the magnetostratigraphic interpretation, as these measurements are less influenced by low magnetization intensities and drilling-related deformation. The magnetostratigraphic interpretations provide much-needed calibration for biostratigraphic events in the high latitude southern oceans. Apart from the ODP Hole 745B (Kerguelen Plateau), published Plio-Pleistocene magnetostratigraphies from ODP sites in the Southern Ocean are poorly constrained. For this reason, we compare interpolated ages of 11 radiolarian events and one diatom event that occur at Hole 745B and Leg 177 sites.