59 resultados para Peak torque
Resumo:
Current attempts to understand climatic variability during the early to middle Pliocene require paleoceanographic information from the Pacific and Indian Oceans that may serve to test and/or constrain future circulation models. Ocean Drilling Program (ODP) Sites 885/886 are located in the central subarctic North Pacific at water depths exceeding 5700 m. Recent studies of rock magnetic properties suggest that the fine-grained Fe oxide component in sediment at Sites 885/886 experienced reductive dissolution during the early-middle Gilbert. Because such an interval in the North Pacific Red Clay Province suggests a maximum in the sedimentary flux of organic carbon and/or a minimum in bottom water dissolved O2 concentrations (and hence, a peak change in North Pacific oceanographic conditions), a geochemical investigation was conducted to test the hypothesis. Quaternary sediment at Hole 886B was subjected to an oxyhydroxide removal procedure, and chemical analyses indicate that bulk sediment concentrations of Fe and the Fe/Sc ratio decrease significantly upon reductive dissolution. Downcore chemical analyses of untreated sediment at Hole 886B demonstrate that similar depletions also occur across the proposed interval of reduced sediment. Downcore chemical analyses also indicate that a pronounced increase in the Ba/Sc ratio occurs across the interval. These results are consistent with an interpretation that abyssal sediment of the North Pacific experienced a decrease in redox conditions during the early-middle Gilbert, and that this change in oxidation state was related to a peak in paleoproductivity. If the zenith of late Miocene to middle Pliocene enhanced productivity observed at other Indo-Pacific divergence regions similarly can be constrained to the early-middle Gilbert, there exists an oceanographic boundary condition in which to test future models concerning Pliocene warmth.
Resumo:
Site 1146 (19°27.40'N, 116°16.37'E) was drilled in ~2092 m water depth in a rift basin on the continental slope of the South China Sea. A total of 607 m of sediment was cored in Hole 1146A, and a composite section from three holes extends down to 640 meters composite depth (mcd). Three stratigraphic sedimentary units were recognized at this site: late Pliocene to Pleistocene nannofossil clay (Unit I), middle Miocene to late Pliocene foraminifer and nannofossil clay mixed sediment (Unit II), and early to middle Miocene nannofossil clay (Unit III). This study reports the mineralogy from the late Miocene through early Pleistocene, 150-440 mcd.
Resumo:
Seismic data acquired over the eastern shelf and margin of the South Orkney microcontinent, Antarctica, have shown a high-amplitude reflection lying at a sub-bottom two-way traveltime (TWT) of 0.5-0.8 s. There appear to be two causes for the reflection which apply in different parts of the shelf. The more widespread cause of the reflection is a break-up unconformity associated with the opening of Jane Basin to the east. This is clearly seen where reflections in the underlying sequence are discordant. In contrast, in Eotvos Basin and the southeastern part of Bouguer Basin, the high-amplitude reflection in places cuts across bedding and is interpreted to be caused by silica diagenesis. A post-cruise analysis of core samples from Site 696 in Eotvos Basin by X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed the presence of a silica diagenetic front at 520-530 mbsf. The position of the unconformity at this site is uncertain, but probably coincides with a change of detrital input near 548 mbsf. Fluctuations of physical properties related to the depth of the diagenetic front are difficult to separate from those related to the variation of detrital composition over the same depth interval. Correlation of the drilling record with the seismic record is difficult but with a synthetic seismogram it is demonstrated that diagenesis is the probable cause of the high-amplitude reflection. In Bouguer Basin at Site 695 the depth of the high-amplitude reflection was not reached by drilling; however, the reflection is probably also caused by silica diagenesis because of the biogenic silica-rich composition of the sediments cored. The estimated temperatures and ages of the sediments at the depths of the high-amplitude reflections at Sites 695 and 696 compare favorably with similar data from other diagenetic fronts of the world. The high-amplitude reflection in Bouguer Basin is commonly of inverse polarity, possibly caused either by interference between reflections from several closely-spaced reflecting layers, such as chert horizons, or by free gas trapped near the diagenetic front.
Resumo:
George V Land (Antarctica) includes the boundary between Late Archean-Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross-Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar-39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar-39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ~1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (~180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro-Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar-39Ar ages from ~530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.
Resumo:
We present tools for rapid and quantitative detection of sediment lamination. The BMPix tool extracts color and gray-scale curves from images at pixel resolution. The PEAK tool uses the gray-scale curve and performs, for the first time, fully automated counting of laminae based on three methods. The maximum count algorithm counts every bright peak of a couplet of two laminae (annual resolution) in a smoothed curve. The zero-crossing algorithm counts every positive and negative halfway-passage of the curve through a wide moving average, separating the record into bright and dark intervals (seasonal resolution). The same is true for the frequency truncation method, which uses Fourier transformation to decompose the curve into its frequency components before counting positive and negative passages. We applied the new methods successfully to tree rings, to well-dated and already manually counted marine varves from Saanich Inlet, and to marine laminae from the Antarctic continental margin. In combination with AMS14C dating, we found convincing evidence that laminations in Weddell Sea sites represent varves, deposited continuously over several millennia during the last glacial maximum. The new tools offer several advantages over previous methods. The counting procedures are based on a moving average generated from gray-scale curves instead of manual counting. Hence, results are highly objective and rely on reproducible mathematical criteria. Also, the PEAK tool measures the thickness of each year or season. Since all information required is displayed graphically, interactive optimization of the counting algorithms can be achieved quickly and conveniently.