942 resultados para PAR attenuation coefficient


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The attenuation property of a lateral propagating light (LPL) in sea ice was measured using an artificial lamp in the Canadian Arctic during the 2007/2008 winter. A measurement method is proposed and applied whereby a recording instrument is buried in the sea ice and an artificial lamp is moved across the instrument. The apparent attenuation coefficient µ(lamda) for the lateral propagating light is obtained from the measured logarithmic relative variation rate. With the exception of blue and red lights, the attenuation coefficient changed little with wavelength, but changed considerably with depth. The vertical decrease of the attenuation coefficient was found to be correlated with salinity: the greater the salinity, the greater the attenuation coefficient. A clear linear relation of salinity and the lateral attenuation coefficient with R2 = 0.939 exists to address the close correlation of the attenuation of LPL with the scattering from the brine. The observed attenuation coefficient of LPL is much larger than that of the vertical propagation light, which we speculate to be caused by scattering. Part of this scattered component is transmitted out of the sea ice from the upper and lower surfaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cruise with RV Tydeman was devoted to study permanently stratified plankton systems in the (sub)tropical ocean, which are characterised by a deep chlorophyll peak between 80 and 150 m. To minimise lateral effects by horizontal transport of nutrients and organic matter from river outflow and upwelling regions, stations were selected in the middle of the North Atlantic Ocean between the continents of America and Africa. (5 - 35° N and 50 - 15° W). Here the vertical distributions of light and nutrients control the abundance and growth of autotrophic algae in the thermically stratified water column. This phytoplankton is numerically dominated by the prokaryotic picoplankters Synechococcus spp. and Prochlorococcus spp., which are smaller than 2 ?m. The productivity of the 100 to 150 m deep euphotic zone can be high, because a high heterotrophic/autotrophic biomass ratio induces a rapid regeneration of nutrients and inorganic carbon. Primary grazers are mainly micro-organisms such as heterotrophic nannoflagellates and ciliates, which feed on the small algae and on bacteria. Heterotrophic bacteria can outnumber the autotrophic algae, because their number is related to the substrate pools of dissolved and particulate dead organic matter. These DOC and detritus pools reach equilibrium at a concentration, where the rate of their production (proportional to algal biomass) equals their mineralisation and sinking rate (proportional to the concentration and weight of POC and detritus). At a relatively low value of the weight-specific loss rates, the equilibrium concentration of these carbon pools and their load of bacteria can be high. The bacterial productivity is proportional to the mineralisation rate, which in a steady state can never be higher than the rate of primary production. Hence the ratio in turnover rate of bacteria and autotrophs tends to be reciprocally proportional to their biomass ratio.