46 resultados para Nelly Arcan
Resumo:
Meiobenthos densities and higher taxon composition were studied in an active gas seepage area at depths from 182 to 252 m in the submarine Dnieper Canyon located in the northwestern part of the Black Sea. The meiobenthos was represented by Ciliata, Foraminifera, Nematoda, Polychaeta, Bivalvia, Gastropoda, Amphipoda, and Acarina. Also present in the sediment samples were juvenile stages of Copepoda and Cladocera which may be of planktonic origin. Nematoda and Foraminifera were the dominant groups. The abundance of the meiobenthos varied between 2397 and 52593 Ind./m**2. Maximum densities of Nematoda and Foraminifera were recorded in the upper sediment layer of a permanent H2S zone at depths from 220 to 250 m. This dense concentration of meiobenthos was found in an area where intense methane seeps were covered by methane-oxidizing microbial mats. Results suggest that methane and its microbial oxidation products are the factors responsible for the presence of a highly sulfidic and biologically productive zone characterized by specially adapted benthic groups. At the same time, an inverse correlation was found between meiofauna densities and methane concentrations in the uppermost sediment layers. The hypothesis is that the concentration of Nematoda and Foraminifera within the areas enriched with methane is an ecological compromise between the food requirements of these organisms and their adaptations to the toxic H2S.
Resumo:
Euphausiids constitute major biomass component in shelf ecosystems and play a fundamental role in the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect to temperature, light and oxygen availability at depth, factors that are highly dependent on season in most marine regions. Changes in the abiotic conditions also shape Euphausiid metabolism including aerobic and anaerobic energy production. Here we introduce a global krill respiration model which includes the effect of latitude (LAT), the day of the year of interest (DoY), and the number of daylight hours on the day of interest (DLh), in addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass and depth) in the ANN model (Artificial Neural Networks). The newly implemented parameters link space and time in terms of season and photoperiod to krill respiration. The ANN model showed a better fit (r**2=0.780) when DLh and LAT were included, indicating a decrease in respiration with increasing LAT and decreasing DLh. We therefore propose DLh as a potential variable to consider when building physiological models for both hemispheres. We also tested for seasonality the standard respiration rate of the most common species that were investigated until now in a large range of DLh and DoY with Multiple Linear Regression (MLR) or General Additive model (GAM). GAM successfully integrated DLh (r**2= 0.563) and DoY (r**2= 0.572) effects on respiration rates of the Antarctic krill, Euphausia superba, yielding the minimum metabolic activity in mid-June and the maximum at the end of December. Neither the MLR nor the GAM approach worked for the North Pacific krill Euphausia pacifica, and MLR for the North Atlantic krill Meganyctiphanes norvegica remained inconclusive because of insufficient seasonal data coverage. We strongly encourage comparative respiration measurements of worldwide Euphausiid key species at different seasons to improve accuracy in ecosystem modelling.
Resumo:
The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 µmol O2/L) and hypoxic (< 63 µmol O2/L) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 µmol/L even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol/m**2/d on average in the oxic zone, to 7 mmol/m**2/d on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol/m**2/d), but declined to 1.3 mmol/m**2/d in bottom waters with oxygen concentrations below 20 µmol/L. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic-hypoxic zone, to 10 % in the hypoxic-anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes.
Resumo:
Antarctic krill (Euphausia superba) from South Georgia comprise one of the most northern and abundant krill stocks. South Georgia waters are undergoing rapid warming, as a result of climate change, which in turn could alter the oxygen concentration of the water. We investigated gene expression in Antarctic krill related to aerobic metabolism, antioxidant defence, and heat-shock response under severe (2.5% O2 saturation or 0.6 kPa) and threshold (20% O2 saturation or 4 kPa) hypoxia exposure compared to in situ levels (normoxic; 100% O2 saturation or 21 kPa). Biochemical metabolic and oxidative stress indicators complemented the genic expression analysis to detect in vivo signs of stress during the hypoxia treatments. Expression levels of the genes citrate synthase (CS), mitochondrial manganese superoxide dismutase (SODMn-m) and one heat-shock protein isoform (E) were higher in euphausiids incubated 6 h at 20% O2 saturation than in animals exposed to control (normoxic) conditions. All biochemical antioxidant defence parameters remained unchanged among treatments. Levels of lipid peroxidation were raised after 6 h of severe hypoxia. Overall, short-term exposure to hypoxia altered mitochondrial metabolic and antioxidant capacity, but did not induce anaerobic metabolism. Antarctic krill are swarming organisms and may experience short periods of hypoxia when present in dense swarms. A future, warmer Southern ocean, where oxygen saturation levels are decreased, may result in smaller, less dense swarms as they act to avoid greater levels of hypoxia.
Resumo:
To understand the adaptation of euphausiid (krill) species to oxygen minimum zones (OMZ), respiratory response and stress experiments combining hypoxia/reoxygenation exposure with warming were conducted. Experimental krill species were obtained from the Antarctic (South Georgia area), the Humboldt Current system (HCS, Chilean coast), and the Northern California Current system (NCCS, Oregon). Euphausia mucronata from the HCS shows oxyconforming or oxygen partial pressure (pO2)-dependent respiration below 80% air saturation (18 kPa). Normoxic subsurface oxygenation in winter posed a "high oxygen stress" for this species. The NCCS krill, Euphausia pacifica, and the Antarctic krill, Euphausia superba maintain respiration rates constant down to low critical pO2 values of 6 kPa (30% air saturation) and 11 kPa (55% air saturation), respectively. Antarctic krill had the lowest antioxidant enzyme activities, but the highest concentrations of the molecular antioxidant glutathione (GSH) and was not affected by 6 h exposure to moderate hypoxia. Temperate krill species had higher SOD (superoxide dismutase) values in winter than in summer, which relate to higher winter metabolic rate (E. pacifica). In all species, antioxidant enzyme activities remained constant during hypoxic exposure at habitat temperature. Warming by 7°C above habitat temperature in summer increased SOD activities and GSH levels in E. mucronata (HCS), but no oxidative damage occurred. In winter, when the NCCS is well mixed and the OMZ is deeper, +4°C of warming combined with hypoxia represents a lethal condition for E. pacifica. In summer, when the OMZ expands upwards (100 m subsurface), antioxidant defences counteracted hypoxia and reoxygenation effects in E. pacifica, but only at mildly elevated temperature (+2°C). In this season, experimental warming by +4°C reduced antioxidant activities and the hypoxia combination again caused mortality of exposed specimens. We conclude that a climate change scenario combining warming and hypoxia represents a serious threat to E. pacifica and, as a consequence, NCCS food webs.
Resumo:
Bathymetry based on data recorded during MSM15-1 between 12.04.2010 and 08.05.2010 in the Black Sea. The aim of this cruise was to quantify the concentration and uptake of oxygen at the anoxic boundaries in the water column and at the sediment water interface of the Black Sea, in parallel with the measurement of nitrogen, carbon, sulfur and iron fluxes (HYPOX project).