67 resultados para Moore, Joanne P., (Joanna Patterson), 1832-1916.
Resumo:
Compressional-wave velocity, wet-bulk density, and porosity were measured on sediments and rocks recovered from Deep Sea Drilling Project Holes 515B and 516F. Wet-bulk densities were measured by both gravimetric and GRAPE methods. Velocities were measured on trimmed samples with the Hamilton frame velocimeter. The shipboard measurement techniques are discussed in the explanatory notes chapter (Coulbourn, this volume) and are described in detail by Boyce (1976a). Only the shipboard measurements are reported here.
Resumo:
Forty indurated sediment samples from Site 516 were studied to determine the cause of acoustic anisotropy in carbonate- bearing deep-sea sediments. Recovered from sub-bottom depths between 388 and 1222 m, the samples have properties exhibiting the following ranges: wet-bulk density, 1.90-2.49 g/cm3; fractional porosity, 0.45-0.14; carbonate content, 33-88%; compressional-wave velocity (at 0.1 kbar pressure), 1.87-4.87 km/s; and anisotropy, 1-13%. Velocities were measured in three mutually perpendicular directions through the same specimen in 29 of the 40 samples studied. Calcite fabric has been estimated by X-ray pole figure goniometry. The major findings of this study are: 1) Carbonate-bearing deep-sea sediments may be regarded as transversely isotropic media with symmetry axes normal to bedding. 2) Calcite c-axes are weakly concentrated in a direction perpendicular to bedding, but the preferred orientation of calcite does not contribute significantly to velocity anisotropy. 3) The properties of bedded and unbedded samples are distinctly different. Unbedded sediments exhibit low degrees of acoustic anisotropy (1-5%). By contrast, bedded samples show higher degrees of anisotropy (to 13%), and anisotropy increases markedly with depth of burial. Thus, bedding must be regarded as the principal cause of acoustic anisotropy in calcareous, deep-sea sediments.
Resumo:
The precise cause and timing of the Cretaceous-Paleocene (K-P) mass extinction 65 Ma ago remains a matter of debate. Many advocate that the extinction was caused by a meteorite impact at Chicxulub, Mexico, and a number of potential kill-mechanisms have been proposed for this. Although we now have good constraints on the size of this impact and chemistry of the target rocks, estimates of its environmental consequences are hindered by a lack of knowledge about the obliquity of this impact. An oblique impact is likely to have been far more catastrophic than a sub-vertical one, because greater volumes of volatiles would have been released into the atmosphere. The principal purpose of this study was to characterize shocked quartz within distal K-P ejecta, to investigate whether the quartz distribution carried a signature of the direction and angle of impact. Our analyses show that the total number, maximum and average size of shocked quartz grains all decrease gradually with paleodistance from Chicxulub. We do not find particularly high abundances in Pacific sites relative to Atlantic and European sites, as has been previously reported, and the size-distribution around Chicxulub is relatively symmetric. Ejecta samples at any one site display features that are indicative of a wide range of shock pressures, but the mean degree of shock increases with paleodistance. These shock- and size-distributions are both consistent with the K-P layer having been formed by a single impact at Chicxulub. One site in the South Atlantic contains quartz indicating an anomalously high average shock degree, that may be indicative of an oblique impact with an uprange direction to the southeast +/- 45°. The apparent continuous coverage of proximal ejecta in this quadrant of the crater, however, suggests a relatively high impact angle of >45°. We conclude that some of the more extreme predictions of the environmental consequences of a low-angle impact at Chicxulub are probably not applicable.