16 resultados para Missing values


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eocene-Oligocene volcanic rocks drilled at Site 786 in the Izu-Bonin forearc cover a wide range of compositions from primitive boninites to highly evolved rhyolites. K-Ar dating reveals at least two distinct episodes of magmatism; one at 41 Ma and a later one at 35 Ma. The early episode produced low-Ca boninites and bronzite andesites that form an oceanic basement of pillow lavas and composite intrusive sheets, overlain by flows and intrusive sheets of intermediate-Ca boninites and bronzite-andesites and a fractionated series of andesites, dacites, and rhyolites. The later episode produced high-Ca boninites and intermediate-Ca boninites, exclusively as intrusive sheets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first data set contains the mean and cofficient of variation (standard deviation divided by mean) of a multi-frequency indicator I derived from ER60 acoustic information collected at five frequencies (18, 38, 70, 120, and 200 kHz) in the Bay of Biscay in May of the years 2006, 2008, 2009 and 2010 (Pelgas surveys). The multi-frequency indicator was first calculated per voxel (20 m long × 5 m deep sampling unit) and then averaged on a spatial grid (approx. 20 nm × 20 nm) for five 5-m depth layers in the surface waters (10-15m, 15-20m, 20-25m, 25-30m below sea surface); there are missing values in particular in the shallowest layer. The second data set provides for each grid cell and depth layer the proportion of voxels for which the multi-frequency indicator I was indicative of a certain group of organisms. For this the following interpretation was used: I < 0.39 swim bladder fish or large gas bubbles, I = 0.39-0.58 small resonant bubbles present in gas bearing organisms such as larval fish and phytoplankton, I = 0.7-0.8 fluidlike zooplankton such as copepods and euphausiids, and I > 0.8 mackerel. These proportions can be interpreted as a relative abundance index for each of the four organism groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2015S22, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-03-01 and 2015-05-06 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2015S26, an autonomous platform, drifting on Arctic sea ice, deployed during the Norwegian Young sea ICE cruise (N-ICE 2015) project. The resulting time series describes the evolution of snow depth as a function of place and time between 2015-01-24 and 2015-02-21 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2015S18, an autonomous platform, drifting on Antarctic sea ice, deployed during POLARSTERN cruise ANT-XXX/2 (PS89). The resulting time series describes the evolution of snow depth as a function of place and time between 2015-01-03 and 2015-01-18 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2014S13, an autonomous platform, drifting on Arctic sea ice, deployed during the CryoVEx2014 field campaign. The resulting time series describes the evolution of snow height as a function of place and time between 2014-03-30 and 2014-07-20 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on multi year ice. In addition to snow height, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow height may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow height, because no initial readings of absolute snow height are available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2013S1, an autonomous platform, installed close to Neumayer III Base, Antarctic during Antarctic Fast Ice Network 2013 (AFIN 2013). The resulting time series describes the evolution of snow height as a function of place and time between 2013-02-11 and 2013-04-29 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on the ice shelf. In addition to snow height, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow height may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow height, because no initial readings of absolute snow height are available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2013S3, an autonomous platform, drifting on Arctic sea ice. This buoy was deployed at the Barneo ice camp 2013. The resulting time series describes the evolution of snow height as a function of place and time between 2013-04-09 and 2013-06-13 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on multi year ice. In addition to snow height, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow height may still be used for sea ice drift analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2013S4, an autonomous platform, installed on land-fast sea ice off Barrow, Alaska during SIZONet 2013. The resulting time series describes the evolution of snow height as a function of place and time between 2013-04-09 and 2013-06-28 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on land-fast sea ice. In addition to snow height, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow height may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow height, because no initial readings of absolute snow height are available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2013S6, an autonomous platform, drifting on Antarctic sea ice, deployed during POLARSTERN cruise ANT-XXIX/6 (PS81). The resulting time series describes the evolution of snow height as a function of place and time between 2013-06-24 and 2013-09-27 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow height, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow height may still be used for sea ice drift analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2013S8, an autonomous platform, drifting on Antarctic sea ice, deployed during POLARSTERN cruise ANT-XXIX/6 (PS81). The resulting time series describes the evolution of snow height as a function of place and time between 2013-07-09 and 2014-01-05 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow height, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow height may still be used for sea ice drift analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2013S7, an autonomous platform, drifting on Antarctic sea ice, deployed during POLARSTERN cruise ANT-XXIX/6 (PS81). The resulting time series describes the evolution of snow height as a function of place and time between 2013-07-06 and 2013-09-13 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow height, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow height may still be used for sea ice drift analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2014S15, an autonomous platform, drifting on Arctic sea ice, deployed during POLARSTERN cruise ARK-XXVIII/4 (PS87). The resulting time series describes the evolution of snow depth as a function of place and time between 2014-08-29 and 2014-12-31 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). The buoy was installed on multi year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Records without any snow depth may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow depth, because no initial readings of absolute snow depth are available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2014S17, an autonomous platform, drifting on Antarctic sea ice, deployed during POLARSTERN cruise ANT-XXX/2 (PS89). The resulting time series describes the evolution of snow depth as a function of place and time between 2014-12-20 and 2015-02-01 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). In this data set, diurnal variations occur in the data set, although the sonic readings were compensated for temperature changes. Records without any snow depth may still be used for sea ice drift analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Snow height was measured by the Snow Depth Buoy 2014S24, an autonomous platform, installed close to Neumayer III Base, Antarctic during Antarctic Fast Ice Network 2014 (AFIN 2014). The resulting time series describes the evolution of snow depth as a function of place and time between 2014-03-07 and 2014-05-16 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on the ice shelf. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow depth, because no initial readings of absolute snow depth are available.