24 resultados para Microbial chemistry


Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular alpha- and beta-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to reduce carbon export and to enhance the respiratory CO2 production in the future ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments associated with freshwater ferromanganese concretions in Lake Charlotte, Nova Scotia, contained microscopic precipitates of manganese and iron. These precipitates were dispersed throughout the sediment and were as rich in nickel, cobalt, and copper as deep sea concretions. In addition, the development of the precipitates appeared to be associated with the microbial oxidation of manganese. Results from the deployment of poisoned and unpoisoned dialysis probes or peepers demonstrated that microbial manganese oxidation and nickel binding were closely associated, causing a fivefold enhancement of abiotic processes such as adsorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution analyses of the oxygen isotope ratio (18O/16O) of dissolved sulfate in pore waters have been made to depths of >400 meters below seafloor (mbsf) at open-ocean and upwelling sites in the eastern equatorial Pacific Ocean. d18O values of dissolved sulfate (d18O-SO4) at the organic-poor open-ocean Site 1231 gave compositions close to modern seawater (+9.5 per mil vs. Vienna-standard mean ocean water, providing no chemical or isotopic evidence for microbial sulfate reduction (MSR). In contrast, the maximum d18O values at Sites 1225 and 1226, which contain higher organic matter contents, are +20 per mil and +28 per mil, respectively. Depth-correlative trends of increasing d18O-SO4, alkalinity, and ammonium and the presence of sulfide indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations at these sites. Although sulfate concentration profiles at Sites 1225 and 1231 both show similarly flat trends without significant net MSR, d18O-SO4 values at Site 1225 reveal the presence of significant microbial sulfur-cycling activity, which contrasts to Site 1231. This activity may include contributions from several processes, including enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon bacterial sulfate reduction, which would tend to shift d18O-SO4 toward higher values than MSR alone, and sulfide oxidation, possibly coupled to reduction of Fe and Mn oxides and/or bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at Sites 1225 and 1226 (epsilon values between 42 per mil and 79 per mil) likely reflect concurrent processes of kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. The oxygen isotope ratio of dissolved pore water sulfate is a powerful tool for tracing microbial activity and sulfur cycling by the deep biosphere of deep-sea sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated above- and belowground ecosystem changes in a 16 year, combined fertilization and warming experiment in a High Arctic tundra deciduous shrub heath (Alexandra Fiord, Ellesmere Island, NU, Canada). Soil emissions of the three key greenhouse gases (GHGs) (carbon dioxide, methane, and nitrous oxide) were measured in mid-July 2009 using soil respiration chambers attached to a FTIR system. Soil chemical and biochemical properties including Q10 values for CO2, CH4, and N2O, Bacteria and Archaea assemblage composition, and the diversity and prevalence of key nitrogen cycling genes including bacterial amoA, crenarchaeal amoA, and nosZ were measured. Warming and fertilization caused strong increases in plant community cover and height but had limited effects on GHG fluxes and no substantial effect on soil chemistry or biochemistry. Similarly, there was a surprising lack of directional shifts in the soil microbial community as a whole or any change at all in microbial functional groups associated with CH4 consumption or N2O cycling in any treatment. Thus, it appears that while warming and increased nutrient availability have strongly affected the plant community over the last 16 years, the belowground ecosystem has not yet responded. This resistance of the soil ecosystem has resulted in limited changes in GHG fluxes in response to the experimental treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Submarine brine lakes feature sharp and persistent concentration gradients between seawater and brine, though these should be smoothed out by free diffusion in open ocean settings. The anoxic Urania basin of the Eastern Mediterranean contains an ultra sulfidic, hypersaline brine of Messinian origin above a thick layer of suspended sediments. With a dual modeling approach we reconstruct its contemporary stratification by geochemical solute transport fundamentals, and show that thermal convection is required to maintain mixing in the brine and mud layer. The origin of the Urania basin stratification was dated to 1650 years before present, which may be linked to a major earthquake in the region. The persistence of the chemoclines may be key to the development of diverse and specialized microbial communities. Ongoing thermal convection in the fluid mud layer may have important, yet unresolved consequences for sedimentological and geochemical processes, also in similar environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfide mineralogy and the contents and isotope compositions of sulfur were analyzed in a complete oceanic volcanic section from IODP Hole 1256D in the eastern Pacific, in order to investigate the role of microbes and their effect on the sulfur budget in altered upper oceanic crust. Basalts in the 800 m thick volcanic section are affected by a pervasive low-temperature background alteration and have mean sulfur contents of 530 ppm, reflecting loss of sulfur relative to fresh glass through degassing during eruption and alteration by seawater. Alteration halos along fractures average 155 ppm sulfur and are more oxidized, have high SO4/Sum S ratios (0.43), and lost sulfur through oxidation by seawater compared to host rocks. Although sulfur was lost locally, sulfur was subsequently gained through fixation of seawater-derived sulfur in secondary pyrite and marcasite in veins and in concentrations at the boundary between alteration halos and host rocks. Negative d34S[sulfide-S] values (down to -30 per mil) and low temperatures of alteration (down to ~40 °C) point to microbial reduction of seawater sulfate as the process resulting in local additions of sulfide-S. Mass balance calculations indicate that 15-20% of the sulfur in the volcanic section is microbially derived, with the bulk altered volcanic section containing 940 ppm S, and with d34S shifted to -6.0 per mil from the mantle value (0 per mil). The bulk volcanic section may have gained or lost sulfur overall. The annual flux of microbial sulfur into oceanic basement based on Hole 1256D is 3-4 * 10**10 mol S/yr, within an order of magnitude of the riverine sulfate source and the sedimentary pyrite sink. Results indicate a flux of bacterially derived sulfur that is fixed in upper ocean basement of 7-8 * 10**-8 mol/cm**-2/yr1 over 15 m.y. This is comparable to that in open ocean sediment sites, but is one to two orders of magnitude less than for ocean margin sediments. The global annual subduction of sulfur in altered oceanic basalt lavas based on Hole 1256D is 1.5-2.0 * 10**11 mol/yr, comparable to the subduction of sulfide in sediments, and could contribute to sediment-like sulfur isotope heterogeneities in the mantle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eight-month-old blocks of the coral Porites lobata colonized by natural Hawaiian euendolithic and epilithic communities were experimentally exposed to two different aqueous pCO2 treatments, 400 ppmv and 750 ppmv, for 3 months. The chlorophyte Ostreobium quekettii dominated communities at the start and at the end of the experiment (65-90%). There were no significant differences in the relative abundance of euendolithic species, nor were there any differences in bioeroded area at the surface of blocks (27%) between pCO2 treatments. The depth of penetration of filaments of O. quekettii was, however, significantly higher under 750 ppmv (1.4 mm) than under 400 ppmv (1 mm). Consequently, rates of carbonate dissolution measured under elevated pCO2 were 48% higher than under ambient pCO2 (0.46 kg CaCO3 dissolved m2/a versus 0.31 kg /m2/a). Thus, biogenic dissolution of carbonates by euendoliths in coral reefs may be a dominant mechanism of carbonate dissolution in a more acidic ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of three coccolithophores (Emiliania huxleyi, Calcidiscus leptoporus and Syracosphaera pulchra) to elevated partial pressure (pCO2) of carbon dioxide was investigated in batch cultures. For the first time, we also report on the response of the non calcifying (haploid) life stage of these three species. The growth rate, cell size, inorganic (PIC) and organic carbon (POC) of both life stages were measured at two different pCO2 (400and 760 ppm) and their organic and inorganic carbon production calculated. The two lifestages within the same species generally exhibited a similar response to elevated pCO2, theresponse of the haploid stage being often more pronounced than that of the diploid stage. Thegrowth rate was consistently higher at higher pCO2 but the response of other processes varied among species. The calcification rate of C. leptoporus and of S. pulchra did not change at elevated pCO2 while increased in E. huxleyi. The POC production as well as the cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. These results suggest that the non-calcifying stage, is more responsive than the calcifying stage and that the most versatile genera will proliferate in a more acidic ocean rather than all coccolithophores will decline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-deck CO2-Fe-manipulated incubation experiments were conducted using surface seawater collected from the Western Subarctic Gyre of the NW Pacific in the summer of 2008 to elucidate the impacts of ocean acidification and Fe enrichment on the abundance and community composition of phytoplankton and eubacteria in the study area. During the incubation, excluding the initial period, the mean partial pressures of CO2 in non-Fe-added bottles were 230, 419, 843, and 1124 µatm, whereas those in Fe-added treatments were 152, 394, 791, and 1008 µatm. Changes in the abundance and community composition of phytoplankton were estimated using HPLC pigment signatures with the program CHEMTAX and flow cytometry. A DGGE fingerprint technique targeting 16S rRNA gene fragments was also used to estimate changes in eubacterial phylotypes during incubation. The Fe addition induced diatom blooms, and subsequently stimulated the growth of heterotrophic bacteria such as Roseobacter, Phaeobacter, and Alteromonas in the post-bloom phase. In both the Fe-limited and Fe-replete treatments, concentrations of 19'-hexanoyloxyfucoxanthin, a haptophyte marker, and the cell abundance of coccolithophores decreased at higher CO2 levels (750 and 1000 ppm), whereas diatoms exhibited little response to the changes in CO2 availability. The abundances of Synechococcus and small eukaryotic phytoplankton (<10 µm) increased at the higher CO2 levels. DGGE band positions revealed that Methylobacterium of Alphaproteobacteria occurred solely at lower CO2 levels (180 and 380 ppm) during the post-bloom phase. These results suggest that increases in CO2 level could affect not only the community composition of phytoplankton but also that of eubacteria. As these microorganisms play critical roles in the biological carbon pump and microbial loop, our results indicate that the progression of ocean acidification can alter the biogeochemical processes in the study area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising levels of atmospheric carbon dioxide and the concomitant increased uptake of this by the oceans is resulting in hypercapnia-related reduction of ocean pH. Research focussed on the direct effects of these physicochemical changes on marine invertebrates has begun to improve our understanding of impacts at the level of individual physiologies. However, CO2-related impairment of organisms' contribution to ecological or ecosystem processes has barely been addressed. The burrowing ophiuroid Amphiura filiformis, which has a physiology that makes it susceptible to reduced pH, plays a key role in sediment nutrient cycling by mixing and irrigating the sediment, a process known as bioturbation. Here we investigate the role of A. filiformis in modifying nutrient flux rates across the sediment-water boundary and the impact of CO2- related acidification on this process. A 40 day exposure study was conducted under predicted pH scenarios from the years 2100 (pH 7.7) and 2300 (pH 7.3), plus an additional treatment of pH 6.8. This study demonstrated strong relationships between A. filiformis density and cycling of some nutrients; activity increases the sediment uptake of phosphate and the release of nitrite and nitrate. No relationship between A. filiformis density and the flux of ammonium or silicate were observed. Results also indicated that, within the timescale of this experiment, effects at the individual bioturbator level appear not to translate into reduced ecosystem influence. However, long term survival of key bioturbating species is far from assured and changes in both bioturbation and microbial processes could alter key biogeochemical processes in future, more acidic oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rising anthropogenic CO2 emissions acidify the oceans, and cause changes to seawater carbon chemistry. Bacterial biofilm communities reflect environmental disturbances and may rapidly respond to ocean acidification. This study investigates community composition and activity responses to experimental ocean acidification in biofilms from the Australian Great Barrier Reef. Natural biofilms grown on glass slides were exposed for 11 d to four controlled pCO2 concentrations representing the following scenarios: A) pre-industrial (~300 ppm), B) present-day (~400 ppm), C) mid century (~560 ppm) and D) late century (~1140 ppm). Terminal restriction fragment length polymorphism and clone library analyses of 16S rRNA genes revealed CO2-correlated bacterial community shifts between treatments A, B and D. Observed bacterial community shifts were driven by decreases in the relative abundance of Alphaproteobacteria and increases of Flavobacteriales (Bacteroidetes) at increased CO2 concentrations, indicating pH sensitivity of specific bacterial groups. Elevated pCO2 (C + D) shifted biofilm algal communities and significantly increased C and N contents, yet O2 fluxes, measured using in light and dark incubations, remained unchanged. Our findings suggest that bacterial biofilm communities rapidly adapt and reorganize in response to high pCO2 to maintain activity such as oxygen production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ongoing oceanic uptake of anthropogenic carbon dioxide (CO2) is significantly altering the carbonate chemistry of seawater, a phenomenon referred to as ocean acidification. Experimental manipulations have been increasingly used to gauge how continued ocean acidification will potentially impact marine ecosystems and their associated biogeochemical cycles in the future; however, results amongst studies, particularly when performed on natural communities, are highly variable, which may reflect community/environment-specific responses or inconsistencies in experimental approach. To investigate the potential for identification of more generic responses and greater experimentally reproducibility, we devised and implemented a series (n = 8) of short-term (2-4 days) multi-level (>=4 conditions) carbonate chemistry/nutrient manipulation experiments on a range of natural microbial communities sampled in Northwest European shelf seas. Carbonate chemistry manipulations and resulting biological responses were found to be highly reproducible within individual experiments and to a lesser extent between geographically separated experiments. Statistically robust reproducible physiological responses of phytoplankton to increasing pCO2, characterised by a suppression of net growth for small-sized cells (<10 µm), were observed in the majority of the experiments, irrespective of natural or manipulated nutrient status. Remaining between-experiment variability was potentially linked to initial community structure and/or other site-specific environmental factors. Analysis of carbon cycling within the experiments revealed the expected increased sensitivity of carbonate chemistry to biological processes at higher pCO2 and hence lower buffer capacity. The results thus emphasise how biogeochemical feedbacks may be altered in the future ocean.