161 resultados para MANGANESE OXIDES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Concretions of iron and manganese oxides and hydrous oxidesóobjects commonly called manganese nodulesóare widely distributed not only on the deep-sea floor but also in shallow marine environments1. Such concretions were not known to occur north of Cape Mendocino in the shallow water zones bordering the North-East Pacific Ocean until the summer of 1966 when they were recovered by one of us (J. W. M.) in dredge samples from Jervis Inlet, a fjord approximately 50 miles north-west of Vancouver, British Columbia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several bog manganese deposits were discovered in the Riding Mountain area in Manitoba during the spring and summer of 1940. A study was made of the known deposits to determine the grade of the occurrences, a possible source of the manganese oxides in the bog deposits and the possibilities of locating other manganese occurrences. Samples of the bog manganese, of spring waters from which the manganese oxides have apparently been precipitated, of the Odanah shale in which the deposits occur, and of "ironstone" nodules found in the Odanah and Riding Mountain shales were gathered in the field and later analyzed. In addition to chemical analyses of the above-mentioned samples, several polished sections of the manganese oxides were prepared and studied under the microscope, thin-sections of nodules were examined, and spectrographic analyses of both nodules and bog manganese were made. ...

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ferromanganese nodules in the deep-sea and in freshwater lakes usually accrete layers rich in manganese oxides alternating with layers rich in iron oxides. The mechanism producing these alternating layers is unknown; indeed, the mechanism producing the nodules themselves is unknown. In Oneida Lake, New York, precipitants from the lake water and the surfaces of nodules at the sediment-water interface are enriched in Mn, whereas nodules buried in lake sediments have surface layers enriched in Fe. It is hypothesized here, using field and laboratory evidence, that reduction and mobilization of Mn from the nodule surface during periods of anoxic sediment cover produce the high Fe layers observed in the nodules.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Manganese nodules from the Suiko Seamount exhibit the significant characteristics in mineral compositions. Well crystallized todorokite and birnessite, which are principal manganese mineral phase in nodules, only occur in the oxide layer directly incasing pebbles and coarse sand. The preferential formation of todorokite or birnessite phases seem to be principally controlled by the reaction rate of iron-manganese oxides with trace elements such as Cu, Ni, Co, Zn, Pb concentrated in nodules, rather than redox characteristics of sedimentary environment or mineralogical diagenetic process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Manganese nodules occurring within marine sediments of presumably Upper Miocene-Lower Pliocene age from cores obtained by the Argentine oceanographic vessel ARA Islas Orcadas in 1977 on the Malvinas (Falkland) Plateau and neighbouring Scotia Sea were studied with the aim of comparing them with other fossil nodules found on the mainland of Argentina that were also ascribed to the marine environment. After optical mineralogical, chemical, X-ray and trace element analysis, the studied "nodules" proved to be actually wacke clasts cemented by manganese oxides with a high Fe/Mn ratio corresponding to a continental environment. The studied "nodules" thus differ from the Argentine mainland nodules and are supposed to have been transported from continental environments and then deposited in the marine realms. The wacke clasts became then nuclei for the deposition of the marine manganese oxides of the coatings. The proportion of trace elements, which is high, suggests the growth of the nodules in the marine environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ability of the hydrated oxides of manganese and iron to adsorb ions from solution (scavenging) is considered in relation to some problems in marine geology, chemistry, and biology. In the ferruginous sediments of the Pacific Ocean, iron oxides are accompanied by titanium, cobalt, and zirconium in amounts proportional to the iron content. Similarly, copper and nickel are linearly related to the manganese content. These observations are explained on the basis of scavenging. An electrochemical theory for the formation of manganese nodules is presented. Marine sediments are classified on the basis of the geosphere in which the solid phases originate. The distribution of certain ionic species in sea water between the solid and aqueous phases is considered on the basis of scavenging and co-ordination compound theory. The concentration of minor elements by members of the marine biosphere is explained either by the direct uptake of the element or by the uptake of iron or manganese oxides with the accompanying scavenged element.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One the most interesting features of ocean sedimentation is the manganese formations on the surface of the ocean floor in some areas. These are especially widespread in the Pacific Ocean as concretions, grains, and crusts on rock fragments and bedrock outcrops. Iron-manganese concretions are the most abundant as they completely cover about 10% of the bottom of the Pacific Ocean where there are ore concentrations. The concretions occupy from 20-50% of the bottom and up to 80-90% on separate submarine rises. Such concretions are found in different types of bottom deposits, from abyssal red clays to terrigenous muds, but they occur most widely in red clays and quite often in carbonate muds. Their shape and their dimensions are very diverse and change from place to place, from station to station, varying from 0.5-20 cm. They may be oval, globular, reniform, or slaggy and often they are fiat or isometric concretions of an indefinite shape. The concretions generally have nuclei of pumice, basalt fragments, clayey and tuffaceous material, sharks' teeth, whale ossicles, and fossil sponges. Most concretions have concentric layers, combined with dendritic ramifications of iron and manganese oxides.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In an earlier paper by two of the authors the conclusion was reached that the 33 recognized species of oxides of Mn could be separated into 3 groups: 1) those which appeared to be persistently supergene in origin, 2) those which appeared to be persistently hypogene, and 3) those which were supergene in some localities and hypogene in other localities. When that paper was written, there were available about 250 X-ray diffraction analyses of mineral specimens, also 35 complete and about 150 partial chemical analyses. The conclusions of that paper were based upon the interpretation of the geologic conditions under which these specimens occurred. Late in the preparation of that paper, it seemed worthwhile to make numerous semiquantitative analyses of specimens, largely from 9 western [U.S.A] states, selected carefully from 5 groups of geologic environments, in the hope that the frequency and percentages of some elements might be distinctive of the several geologic groups. For this purpose, 95 specimens were selected from the 5 groups, as follows: 19 specimens interpreted as supergene oxides by the geologists who collected them, 35 specimens of hypogene vein oxides, 22 specimens of Mn-bearing hot spring aprons, 9 specimens of stratified oxides, and 10 specimens of deep-sea nodules. The spectrographic analyses here recorded indicate that a group of elements - W, Ba, Sr, Be, As, Sb, Tl, and Ge - are present more commonly, and largely in higher percentages, in the hypogene oxide than in the supergene oxides and thus serve to indicate different sources of the Mn. Also, the frequency and percentages of some of these elements indicate a genetic relation of the manganese oxides in hypogene veins, hot spring aprons, and stratified deposits. The analyses indicate a declining percentage of some elements from depth to the surface in these 3 related groups and increasing percentages of some other elements. It is concluded that some of the elements in deep-sea nodules indicate that sources other than rocks decomposed on the continents, probably vulcanism on the floors of the seas, have contributed to their formation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the "Challenger" Deep-Sea Exploring Expedition a great many peculiar-looking manganese nodules or concretions were dredged from the floor of the ocean at great depths, chiefly in the Red Clay areas of the Pacific. In the present paper we propose to point out the distribution of the oxides of manganese in the geological series of rocks, in fresh and sea water, and in marine deposits, with special reference to our explorations in the lochs of the west of Scotland; to give an account of investigations undertaken to ascertain the source of the manganese present in marine deposits in the form of the higher oxides, and thereafter to discuss the various views that have been advanced to explain the formation and distribution of manganese concretions in marine deposits in general.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Todorokite is a very abundant manganese oxide mineral in many deposits in Cuba and has been noted from other localities. Six new analyses are givenl they lead to the approximate formula (Na, Ca, K, Mn+2)(Mn+4, Mn+2, Mg)6O12.3H2O. Electron diffraction data show the mineral to be orthorhombic, or monoclinic with beta near 90°. The x-ray powder pattern is indexed on a cell with a=0.75A, b=2.849A, c=9.59A, beta=90°. A differential thermal analysis curve is given.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Strontium isotopic compositions of acetic acid (HOAc) leachate fractions of eight manganese oxide deposits from the modern seafloor, and of twenty-one buried manganese nodules from Cretaceous to Recent sediments in DSDP/ODP cores were measured. ratios of HOAc leachates in all modern seafloor manganese oxides of various origins are identical with present seawater. The ratios of the HOAc leachates of buried nodules from DSDP/ODP cores are significantly lower than those of nodules from the modern seafloor and are mostly identical with coeval seawater values estimated from the age of associated sediments. It is suggested that the buried nodules in DSDP/ODP cores are not artifacts transported from the present seafloor during the drilling process, but are in situ fossil deposits from the past deep-sea floor during Cretaceous to Quaternary periods. The formation of deep-sea fossil nodules prior to the formation of Antarctic Bottom Water (AABW) indicates that the circulation of oxygenated deep seawaters have activately deposited manganese oxides since the Eocene Epoch, or earlier.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fifteen iron oxide accumulations from the bottoms of two Finnish lakes ("lake ores") were found to contain as much as 50% Fe. Differential X-ray powder diffraction and selective dissolution by oxalate showed that the samples consisted of poorly crystallized goethite and ferrihydrite. The crust ores of one lake had higher ferrihydrite to goethite ratios than the nodular ores of the other lake. The higher ferrihydrite proportion was attributed to a higher rate of Fe2+ supply from the ground water and/or a higher rate of oxidation as a function of water depth and bottom-sediment permeability. Values of Al-for-Fe substitution of the goethites determined from unit-cell dimensions agreed with those obtained from chemical extraction if the unit-cell volume rather than the c dimension was used. In very small goethite crystals a slight expansion of the a unit-cell dimension is probaby compensated by a corresponding contraction of the c dimension, so that a contraction of the c dimension need not necessarily be caused by Al substitution. The goethites of the two lakes differed significantly in their Al-for-Fe substitutions and hence in their unit-cell sizes, OH-bending characteristics, dehydroxylation temperatures, dissolution kinetics, and Mössbauer parameters. The difference in Al substitution (0 vs. 7 mole %) is attributed to the Al-supplying power of the bottom sediments: the silty-clayey sediments in one lake appear to have supplied A1 during goethite formation, whereas the gravelly-sandy sediments in the other lake did not. The compositions of the goethites thus reflect their environments of formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sedimentary rocks of Barremian through early Maestrichtian age recovered on Deep Sea Drilling Project Leg 61 had their principal source in the complex of igneous rocks with which they are interlayered in the Nauru Basin. Relict textures and primary sedimentary structures show these Cretaceous sediments to be of hyaloclastic origin, in part reworked and redeposited by slumps and currents. The dominant composition now is smectite, but locally iron, titanium, and manganese oxides, plagioclase, pyroxene, analcime, clinoptilolite, chalcedonic quartz, cristobalite, amphibole, nontronite, celadonite, and pyrite are also present. The mineral assemblages and the geochemistry reflect the original basaltic composition and its subsequent alteration by one or more processes of submarine weathering, authigenesis, hydrothermal circulation, and contact metamorphism. Hyaloclastitic sandstone, siltstone, and breccia within the sheet flows below 729 meters sub-bottom depth have Barremian fossils, thus establishing the age of the lower, or extrusive, complex of post-ridge-crest volcanism. Similar hyaloclastites between 564 and 729 meters are invaded by hypabyssal sills of the upper igneous complex, and fossil ages of Albian or Cenomanian set an older limit to the age of that second post-ridge-crest episode. Cenomanian to early Campanian sedimentary rocks between 490 and 564 meters have a substantial contribution of clays of submarine-weathered-basalt origin, as well as hydrothermal and pelagic components. The interval of reworked hyaloclastitic siltstone, sandstone, and breccias between 450 and 490 meters is of late Campanian and early Maestrichtian age. These sediments probably formed from glassy basalt that fragmented upon eruption nearby, when sills were being emplaced. In addition to pelagic elements, these Upper Cretaceous volcanogenic sediments include redeposited material of shallow-water origin, apparently derived from the Marshall Islands.