36 resultados para LIGNIN DEGRADATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of composition of biomarkers (lignin and phenols) in aerosols and bottom sediments from the Tropical North Atlantic was carried out. It was shown that organic matter of aerosols was mostly composed of products of terrestrial plants (arboreal fibers, pollen, and spores). Biomarker composition in the aerosols and in the bottom sediments was practically similar, which proved delivery of terrigenous organic matter to the ocean via the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-molecular-weight (LMW) alcohols are produced during the microbial degradation of organic matter from precursors such as lignin, pectin, and carbohydrates. The biogeochemical behavior of these alcohols in marine sediment is poorly constrained but potentially central to carbon cycling. Little is known about LMW alcohols in sediment pore waters because of their low concentrations and high water miscibility, both of which pose substantial analytical challenges. In this study, three alternative methods were adapted for the analysis of trace amounts of methanol and ethanol in small volumes of saline pore waters: direct aqueous injection (DAI), solid-phase microextraction (SPME), and purge and trap (P&T) in combination with gas chromatography (GC) coupled to either a flame ionization detector (FID) or a mass spectrometer (MS). Key modifications included the desalination of samples prior to DAI, the use of a threaded midget bubbler to purge small-volume samples under heated conditions and the addition of salt during P&T. All three methods were validated for LMW alcohol analysis, and the lowest detection limit (60 nM and 40 nM for methanol and ethanol, respectively) was achieved with the P&T technique. With these methods, ambient concentrations of volatile alcohols were determined for the first time in marine sediment pore waters of the Black Sea and the Gulf of Mexico. A strong correlation between the two compounds was observed and tentatively interpreted as being controlled by similar sources and sinks at the examined stations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most deep ocean carbon flux profiles show low and almost constant fluxes of particulate organic carbon (POC) in the deep ocean. However, the reason for the non-changing POC fluxes at depths is unknown. This study presents direct measurements of formation, degradation, and sinking velocity of diatom aggregates from laboratory studies performed at 15 °C and 4 °C during a three-week experiment. The average carbon-specific respiration rate during the experiment was 0.12 ± 0.03 at 15 °C, and decreased 3.5-fold when the temperature was lowered to 4 °C. No direct influence of temperature on aggregate sinking speed was observed. Using the remineralisation rate measured at 4 °C and an average particle sinking speed of 150 m d**-1, calculated carbon fluxes were similar to those collected in deep ocean sediment traps from a global data set, indicating that temperature plays a major role for deep ocean fluxes of POC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical distribution of copepods, fecal pellets and the fecal pellet production of copepods were measured at seven stations across the Southern Indian Ocean from productive areas off South Africa to oligotrophic waters off Northern Australia during October/November 2006. We quantified export of copepod fecal pellet from surface waters and how much was retained. Furthermore, the potential impact of Oncaea spp. and harpacticoid copepods on fecal pellets degradation was evaluated and found to be regional substantial. The highest copepod abundance and fecal pellet production was found in the western nutrient-rich stations close to South Africa and the lowest at the central oligotrophic stations. The in situ copepod fecal pellet production varied between 1 and 1,000 µg C/m**3/day. At all stations, the retention of fecal pellets in the upper 400 m of the water column was more than 99% and the vertical export of fecal pellets was low (<0.02 mg/m**2/day).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three bottom sediment cores were collected from the top, slope, and foot of a small topographic high located near the West European continental rise within the Porcupine abyssal plain at the battleship Bismark wreck site. Using high-efficient gas chromatography technique we determined content and examined molecular composition of n-alkane fraction of hydrocarbons and phenol compounds of lignin. n-Alkane and phenol concentrations in bottom sediments of all three cores were low both in values per unit mass of sediments and in organic matter composition that is typical for pelagic deposits of the World Ocean. They vary from 0.07 to 2.01 µg/g of dry sediment and from 0.0001 to 0.01% of TOC; phenol ranges are from 1.43 to 11.1 µg/g and from 0.03 to 0.6%. Non-uniform supply of terrigenous matter to the bottom under conditions of changes in sedimentation environment in different geological epochs is the principal reason for significant variations in n-alkane and lignin concentrations with depth in the cores. Lignin and its derivatives make the main contribution to formation of organic matter composition of the region in study. With respect to n-alkane and lignin concentrations organic matter of deposits of the West European Basin is composed of remains of higher plants and of autochtonous organic matter of marine flora; they have mixed terrigenous-autochtonous (terrigenous-planktonogenic) origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical composition of the upper layer of sediments (0-1 cm) in the Kolvits and Knazhaya inlets, and also in the deep-water part of the Kandalaksha Bay is considered. It is shown that silts are richer in Fe, TOC, and heavy metals, than sands. The highest concentration of these elements is found in sediments under mixing zones of riverine and sea waters. Correlations of P, Zn, Cd, and Cu with iron are high, and correlations of Pb and Cu with organic carbon are also high. Very high concentration of Pb in the Kandalaksha Bay indicate technogenic pollution of sediments. Lignin makes significant contribution to formation of organic matter in the sediments. Composition of lignin in bottom sediments of the Kandalaksha Bay is defined by composition of lignin in soils and aerosols. Vanillin and syringyl structures prevail in molecular composition of lignin in bottom sediments. Their sources are coniferous vegetations, soils, and mosses. Ratios of certain types of phenol compounds indicate pollution of the upper layer of sediments by technogenic lignin. Lead and copper correlate well with this technogenic lignin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of bottom sediments from the central and northern parts of the Norwegian Sea including study regions at the Storegga landslide, the Haakon Mosby mud volcano, and Knipovich Ridge were carried out. Concentration of n-alkanes in bottom sediments from these regions ranges from 0.53 to 22.1 µg/g of dry sediments that corresponds to 0.02-1.97% of Corg. Molecular composition of hydrocarbons indicates mixed allochtonous-authochtonous genesis of total organic matter (TOC) formed by hydrobiota and residuals of terrestrial plants. Terrigenous organic mater dominates in bottom sediments. Active redox, microbial and thermolytic processes of organic matter transformation take place in the sedimentary mass. Special character of chromatographic spectra of n-alkane distribution in both low and high-molecular ranges, as well as increased naphtene contents can be interpreted as a sign of oil hydrocarbon generation from maternal organic matter as a result of thermocatalytic reactions within sedimentary mass and their displacement into the upper sedimentary layers. Molecular compositions and concentrations of phenols and lignin were determined in core samples from the Norwegian Sea. Total concentration of phenols in the cores ranges from 8.1 to 101.8 (µg/g of dry sediments that corresponds to 0.15-1.15% of TOC. Lignin concentration was estimated at 21.0-459.0 µg/g of dry sediments (0.59-7.9% of ?org. Phenol compounds of p-hydroxybenzoic, vanillin, syringyl and cinnamyl families as basic components of lignin macromolecules were identified. It was found that sea currents and aerosols are the main contributors of lignin into the abyssal part of the Norwegian Sea.