317 resultados para KERMADEC ISLAND-ARC


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrothermal deposits of a wide variety of types are being found with increasing frequency on or near actively spreading mid-ocean ridges. However, they also have a potential to occur in other submarine volcanic settings, including island arcs. To follow up indications of mineralization associated with submarine hydrothermal activity in the south-west Pacific island arc, a joint New Zealand Oceanographic Institute/Imperial College research cruise was mounted in May 1981 aboard the RV Tangaroa. During this cruise, over 130 sampling stations were occupied, at one of which were dredged manganese deposits with strong hydrothermal affinities. This is the first report of such deposits from an island arc setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrothermal Mn-oxide crusts have been removed from the Tonga-Kermadec Ridge, the first such hydrothermal deposits to be reported in the S.W. Pacific island arc. In several respects the deposits are similar to hydrothermal Mn-crusts from oceanic spreading centre settings. They are limited in areal extent, comprise well-crystalline birnessite and generally display extreme fractionation of Mn from Fe. They are strongly depleted in many elements compared to hydrogenous Mn deposits but are comparatively enriched in Li, Zn, Mo and Cd. The Group IA and Group IIA metals show strong intercorrelations and the behaviour of Mg in the purest samples may indicate the extent to which normal seawater has influenced the composition of the deposits. Certain aspects of the deposits are not typical of hydrothermal Mn deposits. In particular at least some of the crusts have developed on a sediment or unconsolidated talus substrate. Some crusts, or specific layers within some crusts, display a chemical composition which suggests a significant input from normal seawater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioaccumulation of metals by zoobenthos was investigated during cruise 11A of R/V Akademik Mstislav Keldysh in the vicinity of a gas-hydrate seep off Paramushir Island in the Sea of Okhotsk. Atomic absorption studies of concentrations of Al, Fe, Mn, Ni, Cu and Zn in zoobenthos (polychaetes, bivalves, ophiurans and echinoderms) collected from depths of 700-800 m indicated that their concentrations in individuals near the seep were not significantly different from those in individuals from other communities. Obtained results indicate that sea urchins and holothurians (non-sorting bottom-feeders) can separate mineral fraction of ingested bottom material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents materials on the chemical and mineralogical composition of Fe-Mn mineralization in island arcs (Kuril, Nampo, Mariana, New Britain, New Hebrides, and Kermadec) in the western part of the Pacific Ocean. The mineralization was proved to be of hydrothermal and/or hydrogenic genesis. The former is produced by hydrothermal Fe and Mn oxi-hydroxides that cement volcanic-terrigenous material in sediments. Some Fe oxyhydroxides can be derived via the halmyrolysis of volcaniclastic material. Crusts of this stage are characterized by fairly low concentrations of trace and rare elements, and their REE composition is inherited from the volcanic-terrigenous material. The minerals of the Mn oxyhydroxides are todorokite and "Ca-birnessite". The Mn/Fe ratio increases away from the discharge sites of the hydrothermal solutions. The hydrogenic Fe-Mn crusts are characterized by high concentrations of trace and minor elements of both the Mn group (Co, Ni, Tl, and Mo) and the Fe group (REE, Y, and Th). The hydrogenic crusts consist of Fe-vernadite and Mn-feroxyhyte. Some of the hydrothermal crusts originally had a hydrothermal genesis. The first data were obtained on crust B30-72-10 from the Macauley Seamount in the Kermadec island arc, which contained anomalously high concentrations of Co (2587 ppm) and other Mn-related trace elements in the absence of hydrogeneous Fe oxyhydroxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyses of the isotopic composition of Pb in (1) western Pacific Ocean sediments [Jurassic(?) to Pleistocene in age, including clays and biogenic oozes], (2) Pacific Ocean basaltic rocks, (3) Mariana frontal arc volcanic rocks (Eocene to Miocene), and (4) Mariana active arc volcanic rocks [Pliocene (?) to Holocene] indicate that Pacific Ocean sediments could not have been a significant component of the source material for the Mariana arc volcanic rocks. Calculations involving the average concentrations and isotopic compositions of Pb in oceanic sediments, sea-floor basaltic rocks, and the Mariana arc volcanic rocks suggest that the sediment component must have been less than 1 percent of this source material. The Pb isotopic compositions of the Mariana arc volcanic rocks lie, within experimental error, along the trend of available Pacific Ocean basalt analyses in versus 207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams. Isotopic analyses of Pb in Pacific Ocean sediments do not lie along this trend; they have higher 207Pb/204Pb and 208Pb/204Pb values for comparable 206Pb/204Pb ratios. Clayey sediments generally have higher 208Pb/204Pb and 207Pb/204Pb ratios than biogenic oozes regardless of the age of the sediment. Comparison of combined Sr and Pb isotopic analyses for (1) mantle-derived materials erupted through oceanic crust, (2) altered ocean-floor basaltic rocks, and (3) volcanic rocks from oceanic island arcs suggests that the Mariana arc volcanic rocks were derived, at least in part, from altered Pacific lithosphere subducted beneath the Mariana arc. Unaltered basalts from the Mariana inter-arc basin (Mariana Trough) have Pb and Sr isotopic compositions that are very similar to those reported for some Hawaiian volcanic rocks but distinct from Mariana active and frontal arc compositions. These observations, in addition to existing major-and trace-element data, support a mantle origin for the interarc basin volcanic rocks. Dacites dredged from the Mariana remnant arc (South Honshu Ridge) have Pb isotopic compositions that are within experimental error of the active-arc analyses, consistent with a genetic relation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Original results of igneous rock studies are presented. The rocks were dredged during a marine expedition (cruise 37 of R/V Akademik M.A. Lavrent'ev in August-September, 2005) in the region of the submarine Vityaz Ridge and the Kuril Arc outer slope. Several age complexes (Late Cretaceous, Eocene, Late Oligocene, Miocene, and Pliocene-Pleistocene) are recognizable on the Vityaz Ridge. These complexes are characterized by a number of common geochemical features since all of them represent formations of island arc calc-alkali series. At the same time, they also have individual features reflecting different geodynamic settings. The outer slope of the Kuril Arc demonstrates submarine volcanism. Pliocene-Pleistocene volcanic rocks dredged here are similar to volcanites of the Kuril-Kamchatka Arc frontal zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly depleted intra-oceanic Tonga-Kermadec island arc forms an endmember of arc systems and a unique location in which to isolate the effects of the slab flux. High precision TIMS uranium, thorium, strontium, neodymium, and lead isotopes, along with complete major and trace element data, have been obtained on an extensive sample set comprising fifty-eight lavas along the arc as well as nineteen samples of the subducting sediments at DSDP site 204 just to the east of the Tonga-Kermadec trench. Ca/Ti and Al/Ti ratios extend from values appropriate to an N-MORB source in the southern Kermadecs to very high ratios in Tonga interpreted to reflect increasing degrees of depletion of the mantle wedge due to backarc basalt extraction. The isotope data emphasize the need for four components in the petrogenesis of the lavas: (1) the mantle wedge; (2) a component with elevated 207Pb/204Pb towards which the Kermadec and southern Tongan lavas extend; (3) a component characterised by high 206Pb/204Pb, Ta/Nd, and low 143Nd/144Nd observed only in the northernmost Tongan islands of Tafahi and Niuatoputapu; (4) a fluid component characterised by strong enrichments of Rb, Ba, U, K, Ph, and Sr, relative to Th, Zr, and the REE and producing large 238U excesses ((230Th/238U) = 0.8-0.5) in the more depleted lavas. The mantle wedge (Component 1) is isotopically similar to the source of the Lau BABB. Component 2 is average pelagic sediment on the downgoing Pacific plate as observed at DSDP sites 595/596 and in the upper sections of the sediment pile at DSDP site 204. Mass balance calculations indicate that less than 0.5% is recycled into the arc lavas; essentially all the subducted sediment is returned to the upper mantle (~0.03 km**3/yr). Exceptionally low concentrations of Ta and Nb relative to Th and the LREE requires that this sediment component is added as a partial melt which was in equilibrium with residual rutile or ilmenite. Component 3 is identified as volcaniclastics from the Louisville Ridge which comprise the lower 44 m of the sediment section intersected at DSDP site 204. These volcaniclastics are spatially restricted to the vicinity of the Louisville Ridge and provide a unique sediment tracer which can be used to show that it takes 4 Myr from the time of subduction to its first appearance in the arc lava signature. Component 4, the fluid contribution to the lava source is inferred to contribute ~1 ppm Rb, 10 ppm Ba, 0.02 ppm U, 600 ppm K, 0.2 ppm Ph, and 30 ppm Sr. It has 87Sr/86Sr = 0.7035 and 206Pb/204Pb = 18.5 and thus it is inferred to have been derived from dehydration of the subducting altered oceanic crust. U-Th isotope disequilibria reflect the time since fluid release from the subducting slab and a reference line through the lowest (230Th/232Th) lavas constrains this to be 30000-50000 yr. The U-Th and Th-Ra isotope systematics are decoupled, and it is suggested that Th-Ra isotope disequilibria record the time since partial melting and thus indicate rapid channelled magma ascent. Olivine gabbro xenoliths from Raoul are interpreted as cumulates to their host lavas with which they form zero age U-Th isochrons indicating that minimal time was spent in magma chambers. The subduction signature is not observed in lavas from the backarc island of Niuafo'ou. These were derived from partial melting of fertile peridotite at 130-160 km depth with melt rates around 0.0002 kg/m**3/yr.