16 resultados para James, Henry, 1843-1916 - The ambassadors
Resumo:
Five sections drilled in multiple holes over a depth transect of more than 2200 m at the Walvis Ridge (SE Atlantic) during Ocean Drilling Program (ODP) Leg 208 resulted in the first complete early Paleogene deep-sea record. Here we present high-resolution stratigraphic records spanning a ~4.3 million yearlong interval of the late Paleocene to early Eocene. This interval includes the Paleocene-Eocene thermal maximum (PETM) as well as the Eocene thermal maximum (ETM) 2 event. A detailed chronology was developed with nondestructive X-ray fluorescence (XRF) core scanning records and shipboard color data. These records were used to refine the shipboard-derived spliced composite depth for each site and with a record from ODP Site 1051 were then used to establish a continuous time series over this interval. Extensive spectral analysis reveals that the early Paleogene sedimentary cyclicity is dominated by precession modulated by the short (100 kyr) and long (405 kyr) eccentricity cycles. Counting of precession-related cycles at multiple sites results in revised estimates for the duration of magnetochrons C24r and C25n. Direct comparison between the amplitude modulation of the precession component derived from XRF data and recent models of Earth's orbital eccentricity suggests that the onset of the PETM and ETM2 are related to a 100-kyr eccentricity maximum. Both events are approximately a quarter of a period offset from a maximum in the 405-kyr eccentricity cycle, with the major difference that the PETM is lagging and ETM2 is leading a 405-kyr eccentricity maximum. Absolute age estimates for the PETM, ETM2, and the magnetochron boundaries that are consistent with recalibrated radiometric ages and recent models of Earth's orbital eccentricity cannot be precisely determined at present because of too large uncertainties in these methods. Nevertheless, we provide two possible tuning options, which demonstrate the potential for the development of a cyclostratigraphic framework based on the stable 405-kyr eccentricity cycle for the entire Paleogene.
Resumo:
The identification in various proxy records of periods of rapid (decadal scale) climate change over recent millennia, together with the possibility that feedback mechanisms may amplify climate system responses to increasing atmospheric CO2, highlights the importance of a detailed understanding, at high spatial and temporal resolutions, of forcings and feedbacks within the system. Such an understanding has hitherto been limited because the temperate marine environment has lacked an absolute timescale of the kind provided by tree-rings for the terrestrial environment and by corals for the tropical marine environment. Here we present the first annually resolved, multi-centennial (489-year), absolutely dated, shell-based marine master chronology. The chronology has been constructed by detrending and averaging annual growth increment widths in the shells of multiple specimens of the very long-lived bivalve mollusc Arctica islandica, collected from sites to the south and west of the Isle of Man in the Irish Sea. The strength of the common environmental signal expressed in the chronology is fully comparable with equivalent statistics for tree-ring chronologies. Analysis of the 14C signal in the shells shows no trend in the marine radiocarbon reservoir correction (DR), although it may be more variable before ~1750. The d13C signal shows a very significant (R**2 = 0.456, p < 0.0001) trend due to the 13C Suess effect.