31 resultados para Iran--Maps--Early works to 1800
Resumo:
The extent to which the spatial distribution of marine planktonic microbes is controlled by local environmental selection or dispersal is poorly understood. Our ability to separate the effects of these two biogeographic controls is limited by the enormous environmental variability both in space and through time. To circumvent this limitation, we analyzed fossil diatom assemblages over the past ~1.5 million years from the world oceans and show that these eukaryotic microbes are not limited by dispersal. The lack of dispersal limitation in marine diatoms suggests that the biodiversity at the microbial level fundamentally differs from that of macroscopic animals and plants for which geographic isolation is a common component of speciation.
Resumo:
Recent advances in radiometric dating result in significant improvements in the geological timescale and provide better insight into the timing of various processes and evolutions within the Earth's system. However, no radiometric ages are contained within the Givetian. Consequently, the absolute ages of the Givetian Stage boundaries, as well as the stage's duration, remain poorly constrained. As an alternative, the analysis of sedimentary cycles allows for the estimation of the duration of this stage. We examined the high-resolution magnetic susceptibility signals of four Givetian outcrops in the Givet area for a possible astronomical imprint, to fully understand the rates of evolutionary and environmental change. All four sections are firmly correlated and wavelet analyses of the magnetic susceptibility signals reveal the imprint of astronomical eccentricity forcing. The highly stable 405 kyr cycles constrain the duration of the Givetian Stage at 4.35±0.45 Myr, which is in good agreement with the International Chronostratigraphic Chart (5.0 Myr). The studied sections also exhibit an imprint of obliquity, suggesting a climatic teleconnection between low and high latitudes. The corresponding microfacies curves demonstrate similar astronomical imprint, and thereby indicate that the observed 10**5 year-scale cyclicity is the result of climatic and environmental change.
Resumo:
Nearly complete Paleogene sedimentary sequences were recovered by Leg 114 to the subantarctic South Atlantic. Silicoflagellate assemblages from the Paleogene and immediately overlying lower Neogene from Sites 698 (Northeast Georgia Rise), 700 (East Georgia Basin), 702 (Islas Orcadas Rise), and 703 (Meteor Rise) were examined. The described assemblage from Hole 700B represents the most complete yet described from the Paleocene, encompassing planktonic foraminifer Zones Plb (upper part) through P4 and Subchrons C25N to C23N. All lower Eocene sediments are barren as a result of diagenesis, except for a single sample from Hole 698A. Middle Eocene silicoflagellates described from Hole 702B range in age from early middle Eocene (P10) to late Eocene (PI5), with correlations to Subchrons C21N to C18N. Hole 703A contains late Eocene through early Miocene assemblages, with paleomagnetic control from Subchrons C16R to C6AAN. Leg 114 biosiliceous sequences contain exceptionally diverse assemblages of silicoflagellates. Approximately 155 species and separate morphotypes are described from the Paleogene and earliest Neogene. New taxa described from Leg 114 sediments include Bachmannocena vetula n. sp., Corbisema animoparallela n. sp., Corbisema camara n. sp., Corbisema constricta spinosa n. subsp., Corbisema delicata n. sp., Corbisema hastata aha n. subsp., Corbisema praedelicata n. sp., Corbisema scapana n. sp., Corbisema triacantha lepidospinosa n. subsp., Dictyocha deflandreifurtivia n. subsp., Naviculopsis biapiculata nodulifera n. subsp., Naviculopsis cruciata n. sp., Naviculopsis pandalata n. sp., Naviculopsis primativa n. sp., and Naviculopsis trispinosa eminula n. subsp. Taxonomic revisions were made to the following taxa: Corbisema constricta constricta emended, Corbisema disymmetrica crenulata n. comb., Corbisema jerseyensis emended, and Distephanus antarcticus n. comb. Silicoflagellate assemblages from the Paleogene and earliest Neogene of Holes 698A, 699A, 700B, 702B, and 703A are the basis of a silicoflagellate zonation spanning the interval from 63.2 to 22.25 Ma. Silicoflagellate zones recognized in this interval include the Corbisema hastata hastata Zone, Corbisema hastata aha Zone, Dictyocha precarentis Zone, Naviculopsis constricta Zone, Naviculopsis foliacea Zone, Bachmannocena vetula Zone, Dictyocha grandis Zone, Naviculopsis pandalata Zone, Naviculopsis constricta-Bachmannocena paulschulzii Zone, Bachmannocena paulschulzii Zone, Naviculopsis trispinosa Zone with subzones a and b, Corbisema archangelskiana Zone, Naviculopsis biapiculata Zone, Distephanus raupii Zone, Distephanus raupii-Corbisema triacantha Zone, and Corbisema triacantha mediana Zone.
Resumo:
Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.
Resumo:
The video FireMovie_2000-2011.avi shows an animation with all MODIS fire product maps of the area sequenced over time. Colors in the video describe MODIS classes as follows: MODIS classification and color scale: Class 0 - not processed - Dark blue (1 frame) Class 3 - water - Light Blue (rivers and some lakes) Class 4 - clouds - Green blue Class 5 - non fire land - Yellow green Class 8 - nominal confidence fire - Red Class 9 - high confidence fire - Dark red
Resumo:
In the present study, proxy data concerning changes in atmospheric CO2 and climatic conditions from the Late Eocene to the Early Miocene were acquired by applying palaeobotanical methods. Fossil floras from 10 well-documented locations in Saxony, Germany, were investigated with respect to (1) stomatal density/index of fossil leaves from three different taxa (Eotrigonobalanus furcinervis, Laurophyllum pseudoprinceps and Laurophyllum acutimontanum), (2) the coexistence approach (CA) based on nearest living relatives (NLR) and (3) leaf margin analysis (LMA). Whereas the results of approach (1) indicate changes in atmospheric CO2 concentration, approaches (2) and (3) provide climate data. The results of the analysis of stomatal parameters indicate that the atmospheric CO2 concentration was higher during the Late Eocene than during the Early Oligocene and increased towards the Late Oligocene. A lower atmospheric pCO2 level after the Late Eocene is also suggested by an increase in marine palaeoproductivity at this time. From the Late Oligocene onwards, no changes in atmospheric CO2 concentration can be detected with the present data. For the considered sites, the results of the coexistence approach and of the leaf margin analysis document a significant cooling event from the Late Eocene to the Early Oligocene. The pCO2 decrease from the Late Eocene to the Early Oligocene indicated by the stomatal data raised in this study was thus coupled to a temperature decrease which is reflected by the present datasets. From the Early Oligocene onwards, however, no further fundamental climate change can be inferred for the considered locations. The pCO2 increase from the Early Oligocene to the Late Oligocene, which is indicated by the present data, is thus not accompanied by a climate change at the considered sites. A warming event during the Late Oligocene is, however, recorded by marine climate archives. According to the present data, no change in pCO2 occurred during the cooling event at the Oligocene/Miocene boundary, which is also indicated by marine data. The quality and validity of stomatal parameters as sensors for atmospheric CO2 concentration are discussed.