24 resultados para Husband and wife--New Jersey--Early works to 1800
Resumo:
Well-preserved and diverse silicoflagellate and ebridian populations are found in the lower and middle Eocene sediments of DSDP Site 605 and the upper Miocene sediments of DSDP Site 604. The ebridians outnumber the silicoflagellates in the siliceous interval of Site 605, but are less numerous at Site 604. The abundances of the various taxa are tabulated.
Resumo:
This report contains the occurrence data for dinoflagellate cysts recorded from 163 samples taken from Sites 902 through 906, during Ocean Drilling Program (ODP) Leg 150. The dinoflagellate cyst (dinocyst) stratigraphy has been presented in Mountain, Miller, Blum, et al. (1994, doi:10.2973/odp.proc.ir.150.1994), and was based on these data. This report provides the full dinocyst data set supporting the dinocyst stratigraphic interpretations made in Mountain, Miller, Blum, et al. (1994). For Miocene shipboard dinocyst stratigraphy, I delineated 10 informal zones: pre-A, and A through I, in ascending stratigraphic order. These zones are defined in Shipboard Scientific Party (1994a, doi:10.2973/odp.proc.ir.150.103.1994), and are based on my studies of Miocene dinocyst stratigraphy in the Maryland and Virginia coastal plain (de Verteuil and Norris, 1991, 1992; de Verteuil, 1995). This zonation has been slightly revised (de Verteuil and Norris, 1996), and the new formal zone definitions are repeated below. Each new zone has an alpha-numeric abbreviation starting with "DN" (for Dinoflagellate Neogene). The equivalence between the informal zones reported in Mountain, Miller, Blum, et al. (1994), and the new DN zones is illustrated in Figure 1. For clarity, I delineated both zonations in the range charts that accompany this report (Tables 1-6). De Verteuil and Norris (1996a), using these and other data, correlated the DN zonation with the geological time scale of Berggren et al. (1995). Figure 2 summarizes these correlations and can be used to check the chronostratigraphic position of samples in this report, as determined by dinocyst stratigraphy. A thorough discussion of the basis for, and levels of uncertainty associated with, these correlations to the Cenozoic time scale can be found in de Verteuil and Norris (1996a). The Appendix lists all the dinocyst taxa recorded during shipboard analyses of Leg 150 samples. Open nomenclature is used for undescribed taxa. The range charts and Appendix also include reference to several new taxa that de Verteuil and Norris (1996b) described from Miocene coastal plain strata in Maryland and Virginia. Names of these taxa in Tables 1 through 6 and in the Appendix of this report are not intended for effective publication as defined in the International Code of Botanical Nomenclature (ICBN, Greuter et al., 1994). Therefore, taxonomic nomenclature contained in this report is not to be treated as meeting the conditions of effective and valid publication (ICBN; Article 29).
Resumo:
Interstitial water and sediment samples of the Integrated Ocean Drilling Program (IODP) expedition 313 "New Jersey Shallow Shelf" were analyzed for chemical composition and stable isotope ratios. A total of 222 water samples were collected from the cores by Rhizon samplers and squeezing of fresh core material. Water was analyzed for its stable oxygen and hydrogen isotope geochemistry (d2H and d18O) at sites M0027A and M0029A, and the carbon isotope composition of the dissolved inorganic carbon (d13CDIC) (all sites). In addition, organic material (Corg) and inorganic carbonates from sediments were analyzed for their carbon ratios (d13Corg and d13Ccarb), and in case of the carbonates also for oxygen (d18Ocarb). Carbon isotopes were also analyzed in samples containing enough methane gas (d13Cmeth). Pore fluids from site M0027A were analyzed for the sulfur isotope composition of dissolved sulfate (d34S). The combination of isotope analyses of all phases (interstitial water, sediment, and gas) with pore water chemistry is expected to enable a better understanding of processes in the sediment and will help to identify the origin of fluids under the New Jersey shelf.
Resumo:
Carbon cycling is an important but poorly understood process on passive continental margins. In this study, we use the ionic and stable isotopic composition of interstitial waters and the petrology, mineralogy, and stable isotopic composition of authigenic carbonates collected from Ocean Drilling Program (ODP) Leg 174A (Sites 1071 and 1072) to constrain the origin of the carbonates and the evolution of methane on the outer New Jersey shelf. The pore fluids of the New Jersey continental shelf are characterized by (1) a fresh-brackish water plume, and (2) organic matter degradation reactions, which proceed through sulfate reduction. However, only minor methanogenesis occurs. The oxygen isotopic composition of the pore fluids supports a meteoric origin of the low salinity fluids. Authigenic carbonates are found in nodules, thin (~1-cm) layers, and carbonate cemented pavements. Siderite is the most common authigenic carbonate, followed by dolomite and calcite. The oxygen isotopic composition of the authigenic carbonates, i.e. 1.3-6.5 per mil PeeDee Belemnite (PDB), indicates an origin in marine pore fluids. The carbon isotopic composition of dolomite cements range from -16.4 to -8.8 per mil PDB, consistent with formation within the zone of sulfate reduction. Siderite d13C values show a greater range (-17.67-16.4 per mil), but are largely positive (mean=2.8 per mil) and are interpreted to have formed throughout the zone of methanogenesis. In contrast, calcite d13C values are highly negative (as low as -41.7 per mil)and must have formed from waters with a large component of dissolved inorganic carbon derived from methane oxidation. Pore water data show that despite complete sulfate reduction, methanogenesis appears not to be an important process presently occurring in the upper 400 m of the outer New Jersey shelf. In contrast, the carbon isotopic composition of the siderites and calcites document an active methanogenic zone during their formation. The methane may have been either oxidized or vented from shelf sediments, perhaps during sea-level fluctuations. If this unaccounted and variable methane flux is an areally important process during Neogene sea-level fluctuations, then it likely plays an important role in long-term carbon cycling on passive continental margins
Resumo:
During Leg 177 of the Ocean Drilling Program (ODP), a well-preserved middle Eocene to lower Miocene sediment record was recovered at Site 1090 on the Agulhas Ridge in the Atlantic sector of the Southern Ocean. This new sediment record shows evidence of a hitherto unknown late Eocene opal pulse. Lithological variations, compositional data, mass-accumulation rates of biogenic and lithogenic sediment constituents, grain-size distributions, geochemistry, and clay mineralogy are used to gain insights into mid-Cenozoic environmental changes and to explore the circumstances of the late Eocene opal pulse in terms of reorganizations in ocean circulation. The base of the section is composed of middle Eocene nannofossil oozes mixed with red clays enriched in authigenic clinoptilolite and smectite, deposited at low sedimentation rates (LE 2 cm/ka). It indicates reduced terrigenous sediment input and moderate biological productivity during this preglacial warm climatic stage. The basal strata are overlain by an extended succession (100 m, 4 cm/ka) of biosiliceous oozes and muds, comprising the upper middle Eocene, the entire late Eocene, and the lowermost early Oligocene. The opal pulse occurred between 37.5 and 33.5 Ma and documents the development of upwelling cells along topographic highs, and the utilization of a marine nutrient- and silica reservoir established during the pre-late Eocene through enhanced submarine hydrothermal activity and the introduction of terrigenous solutions from chemical weathering on adjacent continents. This palaeoceanographic overturn probably was initiated through the onset of increased meridional ocean circulation, caused by the diversion of the Indian equatorial current to the south. The opal pulse was accompanied by increased influxes of terrigenous detritus from southern African sources (illite), mediated by enhanced ocean particle advection in response to modified ocean circulation. The opal pulse ended because of frontal shifts to the south around the Eocene/Oligocene boundary, possibly in response to the opening of the Drake Passage and the incipient establishment of the Antarctic Circumpolar Current. Condensed sediments and a hiatus within the early Oligocene part of the section possibly point to an invigoration of the deep-reaching Antarctic Circumpolar Current. The mid-Oligocene to lower Miocene section on long time scale exhibits less pronounced lithological variations than the older section and points to relatively stable palaeoceanographic conditions after the dramatic changes in the late Eocene to early Oligocene.
Resumo:
Maestrichtian to Holocene calcareous nannofossils from two closely spaced sites on the upper continental rise some 100 miles (161 km) southeast of Atlantic City, New Jersey, were zoned in order to help date a major canyon-cutting event in the late Miocene and to delineate and correlate other hiatuses with seismic stratigraphy. Mid-middle Eocene through middle Miocene sediments (Zones CP14 to CN6) were not recovered in these holes, but nearly all other zones are accounted for. The Eocene section is described in a companion chapter (Applegate and Wise, 1987, doi:10.2973/dsdp.proc.93.118.1987). Nannofossils are generally sparse and moderately preserved in the clastic sediments of Site 604. Sedimentation rates are extremely high for the upper Pleistocene (201 m/m.y. minimum) above a hiatus calculated to span 0.44 to 1.1 Ma. The associated disconformity is correlated with local seismic reflection Horizon Pr . Sedimentation rates continue to be high (93 m/m.y.) down to a second hiatus in the upper Pliocene dated from about 2.4 to 2.9 (or possibly 3.3) Ma. The disconformity associated with this hiatus is correlated with local seismic reflection Horizon P2 and regional Reflector Blue, which can be interpreted to mark either the onset of Northern Hemisphere continental glaciation or circulation changes associated with the closure of the Central American Seaway. Sedimentation rates in the pre-glacial lower Pliocene are only about a third those in the glacial upper Pliocene. A prominent disconformity in the upper Miocene marks a major lithologic boundary that separates Messinian(?) glauconitic claystones above from lower Tortonian conglomeratic debris flows and turbidites below. The debris flows recovered are assigned to nannofossil Zones CN8a and CN7, but drilling difficulties prevented penetration of the bottom of this sequence some 100 m below the terminal depth of the hole. Correlation of the lower bounding seismic reflector (M2/Merlin?) to a drift sequence drilled on the lower rise at DSDP Site 603, however, predicts that the debris flows began close to the beginning of the late Miocene (upper Zone CN6 time) at about 10.5 Ma. The debris flows represent a major canyon-cutting event that we correlate with the beginning of the particularly severe late Miocene glaciations believed to be associated with the formation of the West Antarctic Ice Sheet. The existence of these spectacular debris flows strongly suggest that the late Miocene glacio-eustatic low stand occurred during Vail Cycle TM3.1 (lower Tortonian) rather than during Vail Cycle TM3.2 (Messinian) as originally published. Beneath a set of coalesced regional disconformities centered upon seismic reflection Horizon Au, coccoliths are abundant and in general are moderately preserved at Site 605 in a 619-m carbonate section extending from the middle Eocene Zone CP13b to the upper Maestrichtian Lithraphidites quadratus Zone. Sedimentation rates are 37 m/m.y. in the Eocene down to a condensed interval near the base (Zone CP9). A disconformity is suspected near the Eocene/Paleocene boundary. Sedimentation rates for the upper Paleocene Zone CP8 are similar to those of the Eocene, but Zones CP7 and CP6 lie within another condensed interval. The highest Paleocene rates are 67 m/m.y. down through Zones CP5 and CP4 to a major disconformity that separates the upper Paleocene from the Danian. This hiatus spans about 2.6 m.y. (upper Zone CP3 to lower Zone CP2) and corresponds to the major sea-level drop at the base of Vail Cycle TE2.1. As the most prominent break in this Paleogene section, it may correspond to seismic reflection Horizon A* of the North American Basin. Sedimentation rates from this point to the Cretaceous/Tertiary boundary drop to 11 m/m.y., still high for a Paleocene DSDP section. No major break in deposition could be detected at the Cretaceous/Tertiary boundary.
Resumo:
In the New Jersey Coastal Plain, a silty to clayey sedimentary unit (the Marlboro Formation) represents deposition during the Paleocene-Eocene thermal maximum (PETM). This interval is remarkably different from the glauconitic sands and silts of the underlying Paleocene Vincentown and overlying Eocene Manasquan Formation. We integrate new and published stable isotope, biostratigraphic, lithostratigraphic and ecostratigraphic records, constructing a detailed time frame for the PETM along a depth gradient at core sites Clayton, Wilson Lake, Ancora and Bass River (updip to downdip). The onset of the PETM, marked by the base of the carbon isotope excursion (CIE), is within the gradual transition from glauconitic silty sands to silty clay, and represented fully at the updip sites (Wilson Lake and Clayton). The CIE "core" interval is expanded at the updip sites, but truncated. The CIE "core" is complete at the Bass River and Ancora sites, where the early part of the recovery is present (most complete at Ancora). The extent to which the PETM is expressed in the sediments is highly variable between sites, with a significant unconformity at the base of the overlying lower Eocene sediments. Our regional correlation framework provides an improved age model, allowing better understanding of the progression of environmental changes during the PETM. High-resolution benthic foraminiferal data document the change from a sediment-starved shelf setting to a tropical, river-dominated mud-belt system during the PETM, probably due to intensification of the hydrologic cycle. The excellent preservation of foraminifera during the PETM and the lack of severe benthic extinction suggest there was no extreme ocean acidification in shelf settings.
Resumo:
Paleogene calcareous nannofossils from split spoon cores recovered from five wells along the Coastal Plain of New Jersey and Maryland have been analyzed in order to provide onshore information complementary to that derived from the offshore DSDP Site 605 (upper continental rise off New Jersey). Hiatuses are more numerous and of greater extent in the onshore sections, but the major ones correlate well with those noted in the offshore section. At one site at least (Leggett Well), sedimentation may well have been continuous across the Cretaceous/Tertiary boundary, as it is believed to have been at DSDP Site 605. These various correlations are discussed elsewhere in a companion paper (Olsson and Wise, this volume). Important differences in nannofossil assemblages are noted between the onshore (shelf paleoenvironment) and offshore (slope-rise paleoenvironment) sections. Lithostromation simplex, not present offshore, is consistently present onshore and seems to be confined to the Eocene shelf sediments of this region. The same relationship holds for the zonal marker, Rhabdosphaera gladius Locker. The Rhomboaster-Tribrachiatus plexus is more diverse and better preserved in the onshore sections, where the lowermost Eocene Zone CP9 is well represented. Differential preservation is postulated to account for two morphotypes of Tribrachiatus bramlettei (Brönnimann and Stradner). Type A is represented at DSDP Site 605 by individuals with short, stubby arms, but these forms are not present in the equivalent onshore sections. There they are replaced by the Type B morphotypes, which exhibit a similar basic construction but possess much longer, more delicate arms.
Resumo:
Three complementary imaging techniques were used to describe a complex rosette-shaped microboring that penetrates the shells of brachiopods from the OrdovicianSilurian shallow marine limestones of Anticosti Island, Canada. Pyrodendrina cupra n. igen. and isp. is among the oldest dendrinid microborings and consists of shallow and deep penetrating canals that radiate from a central polygonal chamber. The affinity of the tracemaker is unknown, but a foraminiferal origin, as proposed for some dendrinid borings, is rejected. Combining microCT with traditional stereomicroscopy and SEM helped distinguish and quantify fine morphological features while maintaining contextual information of the microboring within the shell substrate. Different imaging techniques inherently bias the description of microborings. These biases must be accounted for as new methods in ichnotaxonomy are integrated with past research based on different methods.
Resumo:
Well-preserved Mesozoic radiolarian faunas have been recovered at four sites of Deep Sea Drilling Project Leg 62. Late Early Cretaceous assemblages, which occur always with foraminifers or calcareous nannoplankton, allow the description of 21 new species, the introduction of a new zone scheme, and calibration of the radiolarian zones with the geochronological scale.
Resumo:
Abundance records of planktonic foraminifera (>150 µm) from the upper 520 m of ODP Site 1073 (Hole 1073A, Leg 174A, 639 m water depth) have been integrated with SPECMAP-derived isotope stratigraphy, percentage of calcium carbonate, and coarse sediment fraction data in order to investigate the Pleistocene climatic history of the New Jersey margin. Six planktonic taxonomic groups dominate the foraminiferal assemblage at Site 1073: Neogloboquadrina pachyderma (d) (mean 33.8%), Turborotalita quinqueloba (18.5%), N. pachyderma (s) (18.4%), Globigerina bulloides group (11.4%), Globorotalia inflata group (9.4%), and Globigerinita glutinata (4.1%). Based on the distributions of these six foraminiferal groups, the Pleistocene section can be divided into three paleoclimatic intervals: Interval I (intermediate) corresponds to the Quaternary sediments from sequence boundary pp1 to the seafloor (79.5-0 mbsf; Emiliania huxleyi acme [85 ka] at 72 mbsf); Interval II (warm) occurs between sequence boundaries pp3 and pp1 (325-79.5 mbsf; last occurrence of Pseudoemiliania lacunosa [460 ka] at 330 mbsf); and Interval III (coldest) occurs between sequence boundaries pp4 and pp3 (520-325 mbsf; Calcareous nannofossils and dinocysts in proximity to pp4 indicate that the sedimentary record for 0.9-1.7 Ma is either missing altogether or highly condensed within the basal few meters of the section). Neogloboquadrina pachyderma (d) displays eight peaks of abundance which correlate, for the most part, with depleted delta18O values, increases in calcium carbonate percentages, low coarse fraction percentages, increased planktonic fragmentation (greater dissolution), and low N. pachyderma (s) abundances. These intervals are interpreted as representing warmer/interglacial conditions. Neogloboquadrina pachyderma (s) displays seven peaks of abundance which correlate, for the most part, with delta18O increases, decreases in calcium carbonate percentages, increases in coarse fraction percentages, and low N. pachyderma (d) abundances. These intervals are interpreted as representing cooler/glacial conditions. In Interval III, a faunal response to relative changes in sea-surface temperature is reflected by abundance peaks in Neogloboquadrina pachyderma (d), followed by Turborotalita quinqueloba and then N. pachyderma (s) (proceeding from warmest to coolest, respectively). This tripartite response is consistent with the oxygen isotope record and, although not as clear, also occurs in Intervals I and II. Six peaks/peak intervals of Globigerina bulloides abundance are closely matched by peaks in Globigerinita glutinata and occur within oxygen isotope stage (OIS) 2 (latter part) 3, 4, 5, 8, 9, 13(?), 14(?), and 15(?). We speculate that these intervals reflect increased upwelling and nutrient levels during both glacials and interglacials. Eight peak intervals of Globorotalia inflata show a general inverse correlation with G. bulloides and may reflect lowered nutrient and warmer surface waters.
Resumo:
Nearly complete Paleogene sedimentary sequences were recovered by Leg 114 to the subantarctic South Atlantic. Silicoflagellate assemblages from the Paleogene and immediately overlying lower Neogene from Sites 698 (Northeast Georgia Rise), 700 (East Georgia Basin), 702 (Islas Orcadas Rise), and 703 (Meteor Rise) were examined. The described assemblage from Hole 700B represents the most complete yet described from the Paleocene, encompassing planktonic foraminifer Zones Plb (upper part) through P4 and Subchrons C25N to C23N. All lower Eocene sediments are barren as a result of diagenesis, except for a single sample from Hole 698A. Middle Eocene silicoflagellates described from Hole 702B range in age from early middle Eocene (P10) to late Eocene (PI5), with correlations to Subchrons C21N to C18N. Hole 703A contains late Eocene through early Miocene assemblages, with paleomagnetic control from Subchrons C16R to C6AAN. Leg 114 biosiliceous sequences contain exceptionally diverse assemblages of silicoflagellates. Approximately 155 species and separate morphotypes are described from the Paleogene and earliest Neogene. New taxa described from Leg 114 sediments include Bachmannocena vetula n. sp., Corbisema animoparallela n. sp., Corbisema camara n. sp., Corbisema constricta spinosa n. subsp., Corbisema delicata n. sp., Corbisema hastata aha n. subsp., Corbisema praedelicata n. sp., Corbisema scapana n. sp., Corbisema triacantha lepidospinosa n. subsp., Dictyocha deflandreifurtivia n. subsp., Naviculopsis biapiculata nodulifera n. subsp., Naviculopsis cruciata n. sp., Naviculopsis pandalata n. sp., Naviculopsis primativa n. sp., and Naviculopsis trispinosa eminula n. subsp. Taxonomic revisions were made to the following taxa: Corbisema constricta constricta emended, Corbisema disymmetrica crenulata n. comb., Corbisema jerseyensis emended, and Distephanus antarcticus n. comb. Silicoflagellate assemblages from the Paleogene and earliest Neogene of Holes 698A, 699A, 700B, 702B, and 703A are the basis of a silicoflagellate zonation spanning the interval from 63.2 to 22.25 Ma. Silicoflagellate zones recognized in this interval include the Corbisema hastata hastata Zone, Corbisema hastata aha Zone, Dictyocha precarentis Zone, Naviculopsis constricta Zone, Naviculopsis foliacea Zone, Bachmannocena vetula Zone, Dictyocha grandis Zone, Naviculopsis pandalata Zone, Naviculopsis constricta-Bachmannocena paulschulzii Zone, Bachmannocena paulschulzii Zone, Naviculopsis trispinosa Zone with subzones a and b, Corbisema archangelskiana Zone, Naviculopsis biapiculata Zone, Distephanus raupii Zone, Distephanus raupii-Corbisema triacantha Zone, and Corbisema triacantha mediana Zone.
Resumo:
We reconstruct paleoproductivity at three sites in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088) to investigate the presence and extent of the late Miocene to early Pliocene 'biogenic bloom' from 9 to 3 Ma. Our approach involves construction of multiple records including benthic foraminiferal and CaCO3 accumulation rates, Uvigerina counts, dissolution proxies, and geochemical tracers for biogenic and detrital fluxes. This time interval also contains the so-called late Miocene carbon isotope shift, a well-known decrease in benthic foraminiferal d13C values. We find that the timing of paleoproductivity maxima differs among the three sites. At Site 982 (North Atlantic), benthic foraminifera and CaCO3 accumulation were both at a maximum at ~5 Ma, with smaller peaks at ~6 Ma. The paleoproductivity maximum was centered earlier (~6.6-6.0 Ma) in the tropical Atlantic (Site 925). In the South Atlantic (Site 1088), paleoproductivity increased even earlier, between 8.2 Ma and 6.2 Ma, and remained relatively high until ~5.4 Ma. We note that there is some overlap between the interval of maximum productivity between Sites 925 and 1088, as well as the minor productivity increase at Site 982. We conclude that the paleoproductivity results support hypotheses aiming to place the biogenic bloom into a global context of enhanced productivity. In addition, we find that at all three sites the d13C shift is accompanied by carbonate dissolution. This observation is consistent with published studies that have sought a relationship between the late Miocene carbon isotope shift and carbonate preservation.
Resumo:
Examination of the clay mineralogy of Cenozoic sediment samples from Deep Sea Drilling Project Sites 604 and 605 on the upper continental rise off New Jersey indicates that sediment deposition of two different clay mineral facies has occurred. These sites are marked by Paleogene deposition of illite with subordinate kaolinite and smectite covarying in inverse proportion, and by Neogene deposition dominated by illite with subordinate kaolinite and chlorite. Leg 93 results agree with the clay mineral facies proposed by Hathaway (1972), which defined a "Northern facies" consisting of illite and chlorite, with feldspar and hornblende, from erosion of rocks north of Cape Hatteras, and a "Southern facies" composed of smectite, kaolinite, and mixed-layer illite-smectites. Neogene and Quaternary sediments at Sites 604 and 605 contain the "Northern facies," and Paleogene sediments contain the "Southern facies" minerals. Feldspar is exclusively found in Neogene-Quaternary sediments, as is the majority of the amphibole found in these samples. Widespread Paleogene volcanic source materials are suggested by the presence of smectite throughout the early Paleocenemiddle Eocene sediments recovered at Site 605. The clay mineral stratigraphy at Leg 93 sites is comparable to the record at nearby DSDP sites on the lower continental rise and abyssal plain of the northwestern Atlantic (DSDP Sites 388, 105, and 106), and also with the sediments recovered by drilling on the Mazagan Plateau off northwestern Morocco (DSDP Sites 544-547) in the eastern North Atlantic.