164 resultados para Hauing intensification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Benguela Current, located off the west coast of southern Africa, is tied to a highly productive upwelling system**1. Over the past 12 million years, the current has cooled, and upwelling has intensified**2, 3, 4. These changes have been variously linked to atmospheric and oceanic changes associated with the glaciation of Antarctica and global cooling**5, the closure of the Central American Seaway**1, 6 or the further restriction of the Indonesian Seaway**3. The upwelling intensification also occurred during a period of substantial uplift of the African continent**7, 8. Here we use a coupled ocean-atmosphere general circulation model to test the effect of African uplift on Benguela upwelling. In our simulations, uplift in the East African Rift system and in southern and southwestern Africa induces an intensification of coastal low-level winds, which leads to increased oceanic upwelling of cool subsurface waters. We compare the effect of African uplift with the simulated impact of the Central American Seaway closure9, Indonesian Throughflow restriction10 and Antarctic glaciation**11, and find that African uplift has at least an equally strong influence as each of the three other factors. We therefore conclude that African uplift was an important factor in driving the cooling and strengthening of the Benguela Current and coastal upwelling during the late Miocene and Pliocene epochs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cenozoic ice-rafted debris (IRD) history of the central Arctic is reconstructed utilizing the terrigenous coarse sand fraction in IODP 302 cores from 0 to 273 meters composite depth. This Holocene - middle Eocene quantitative record of terrigenous sand accumulation on the Lomonosov Ridge, along with qualitative information on grain texture and composition, confirms the interpretation that ice initiation (sea ice and glacial ice) occurred ~46 Ma in the Arctic, and provides a long-term pattern of Arctic ice expansion and decay since the middle Eocene. IRD mass accumulation rates range from 0 to 0.13 g/cm2/ka in the middle Eocene and from 0 to 0.36 g/cm2/ka in the Neogene. IRD mass accumulation rate (MAR) maxima in the Miocene and Pliocene cooccur with either glacial initiation or intensification in the sub-Arctic. The 46.25 Ma IRD onset in the central Arctic slightly precedes the earliest evidence of ice in the Antarctic, and compares in timing with a >1000 ppm decrease in atmospheric concentrations of CO2. The decline of pCO2 in the middle Eocene may have driven both poles across the temperature threshold that enabled the nucleation of glaciers on land and partial freezing of the surface Arctic Ocean, especially during times of low insolation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass accumulation rates (MAR) of different components of North Pacific deep-sea sediment provide detailed information about the timing of the onset of major Northern Hemisphere glaciation that occurred at 2.65 Ma. An increase in explosive volcanism in the Kamchatka-Kurile and Aleutian arcs occured at this same time, suggesting a link between volcanism and glaciation. Sediments recovered by piston-coring techniques during ODP Leg 145 provide a unique opportunity to undertake a detailed test of this possibility. Here we use volcanic glass as a proxy for explosive volcanism and ice-rafted debris (IRD) as a proxy for glaciation. The MAR of both glass and IRD increase markedly at 2.65 Ma. Further, the flux of the volcanic glass increased just prior the flix of ice-radted material, suggesting that the cooling resulting from explosive volcanic eruptions may have been the ultimate trigger for the mid-Pliocene glacial intensification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and d18O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biogenic records of the marine palaeoproductivity (carbonates, organic carbon, and C37 alkenones) and the molecular stratigraphy of past sea surface temperatures (SSTs; UK'37) were studied at high resolution in two cores of the Iberian Margin. The comparison of these records indicates that the oceanographic conditions switched abruptly during the past 160 kyr between three kinds of regimes. A first regime with high (17-22°C) SST and low productivity typifies the interglacial periods, marine isotopic stages (MIS) 5 and 1. Several periods during MIS 6, 2, and the terminations II and I are characterised by about 4-5°C colder SST and a higher organic matter accumulation, both of which define the second regime. This anticorrelation between SST and marine productivity suggests that these variations are related to the intensity of the coastal upwelling. By contrast with this upwelling behaviour, extremely low biological productivity and very cold SST (6-12°C) occurred during short phases of glacial MIS 6, 4, and 2, and as abrupt events (~1 kyr or less) during MIS 3. The three oceanographic regimes are consistent with micropalaeontological changes in the same cores based on foraminifera and diatoms. The general trend of these hydrologic changes follows the long-term glacial/interglacial cycle, but the millennium scale variability is clearly related to Heinrich events and Dansgaard-Oeschger cycles. Strengthening of the upwelling corresponds probably to an intensification of the subtropical atmospheric circulation over the North Atlantic which was influenced by the presence of continental ice sheets. However, extreme glacial conditions due to massive discharges of icebergs interrupted the upwelling. Interestingly, both terminations II and I coincided with strong but transient intensification of the upwelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents the results of high-resolution sedimentological and clay mineralogical investigations on sediments from ODP Sites 908A and 909AlC located in the central Fram Strait. The objective was to reconstruct the paleoclimate and paleoceanography of the high northern latitudes since the middle Miocene. The sediments are characterised in particular by a distinctive input of ice-rafted material, which most probably occurs since 6 Ma and very likely since 15 Ma. A change in the source area at 1 1.2 Ma is clearly marked by variations within clay mineral composition and increasing accumulation rates. This is interpreted as a result of an increase in water mass exchange through the Fram Strait. A further period of increasing exchange between 4-3 Ma is identified by granulometric investigations and points to a synchronous intensification of deep water production in the North Atlantic during this time interval. A comparison of the components of coarse and clay fraction clearly shows that both are not delivered by the Same transport process. The input of the clay fraction can be related to transport mechanisms through sea ice and glaciers and very likely also through oceanic currents. A reconstruction of source areas for clay minerals is possible only with some restrictions. High smectite contents in middle and late Miocene sediments indicate a background signal produced by soil formation together with sediment input, possibly originating from the Greenland- Scotland Ridge. The applicability of clay mineral distribution as a climate proxy for the high northern latitudes can be confirmed. Based on a comparison of sediments from Site 909C, characterised by the smectite/illite and chlorite ratio, with regional and global climatic records (oxygen isotopes), a middle Miocene cooling phase between 14.8-14.6 Ma can be proposed. A further cooling phase between 10-9 Ma clearly shows similarities in its Progress toward drastic decrease in carbonate sedimentation and preservation in the eastern equatorial Pacific. The modification in sea water and atmosphere chemistry may represent a possible link due to the built-up of equatorial carbonate platforms. Between 4.8-4.6 Ma clay mineral distribution indicates a distinct cooling trend in the Fram Strait region. This is not accompanied by relevant glaciation, which would otherwise be indicated by the coarse fraction. The intensification of glaciation in the northern hemisphere is distinctly documented by a rapid increase of illite and chlorite starting from 3.3 Ma, which corresponds to oxygen isotope data trends from North Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of the analysis of samples of the Northern Dvina River's suspended particulate matter obtained by the sedimentation method from large water volumes in the periods of the spring high water and summer low water are presented. By the method of sequential leaching using different reagents, four fractions have been separated: the F1 is the sorbed complex and carbonates, the F2 is the amorphous hydroxides of Fe and Mn, the F3 is the form connected with the organic matter, and the F4 is the residual or silicate-detrital (inert) form. The data have shown that all ten elements determined were grouped with respect to the ratio of the distinguished forms: F4 is the predominant form for Al and Fe (73-88% of all the forms; however, the summer sample contains only 38% of this form of iron, and F2 is the predominant form for this period with 46.6%). As to Mn, the F1, F2, and F4 are nearly equally distributed in the spring high water samples, and only the F3 form is less important (5.4%). In the summer sample, the manganese sorbed complex is predominant (53.5%); for Cu, Ni, Cr, and Co, the inert F4 form is predominant (60-70%) in the sample of the spring suspended matter. The summer low water suspended matter has a lower F4 contribution (25-45%); for Zn, Pb, and Cd, the equal distribution of the forms in the spring samples is typical, while the summer suspended matter differs by the F2 form's predominance (53-61% for Zn and Pb). The main conclusion from the acquired data is that the geochemical mobility of all the studied elements, except for cadmium, in the summer low water suspended matter is higher than in the spring suspended matter. The more intensive biogeochemical processes in August, the high level of organic matter, and the higher contribution of phytoplankton lead to the intensification of the metals' geochemical activity in the Northern Dvina suspended matter in the end of the summer compared to the spring high water period when the physical processes are predominant over the biogeochemical ones due to the high speeds of the freshened waters flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to assess how insolation-driven climate change superimposed on sea level rise and millennial events influenced the Red Sea during the Holocene, we present new paleoceanographic records from two sediment cores to develop a comprehensive reconstruction of Holocene circulation dynamics in the basin. We show that the recovery of the planktonic foraminiferal fauna after the Younger Dryas was completed earlier in the northern than in the central Red Sea, implying significant changes in the hydrological balance of the northern Red Sea region during the deglaciation. In the early part of the Holocene, the environment of the Red Sea closely followed the development of the Indian summer monsoon and was dominated by a circulation mode similar to the current summer circulation, with low productivity throughout the central and northern Red Sea. The climatic signal during the late Holocene is dominated by a faunal transient event centered around 2.4 ka BP. Its timing corresponds to that of North Atlantic Bond event 2 and to a widespread regionally recorded dry period. This faunal transient is characterized by a more productive foraminiferal fauna and can be explained by an intensification of the winter circulation mode and high evaporation. The modern distribution pattern of planktonic foraminifera, reflecting the prevailing circulation system, was established after 1.7 ka BP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cretaceous to Quaternary sediments recovered at Leg 119 Sites 738 and 744 on the southern tip of the Kerguelen Plateau were studied in order to determine the depositional environment and the paleoceanography of the southern Indian Ocean and especially the long-term glacial history of East Antarctica. Emphasis is given to bulk-sediment composition, grain-size data, and clay mineralogy. The sediment sequence at the two sites is generally of a highly pelagic character, with nannofossil oozes, chalks, and limestones dominant from the Turanian to upper Miocene and diatom oozes dominant within the uppermost Miocene to Holocene interval. The first indication of glaciation at sea level is the occurrence of isolated gravel and terrigenous sand grains, which indicate ice rafting in the middle Eocene interval of 45.0-42.3 Ma. A major intensification of glaciation, probably the onset of continental East Antarctic glaciation, is recorded in sediments of early Oligocene age (36.0 Ma). All major sediment parameters document this event. The clay mineralogy changes from smectite-dominated assemblages, typical of moderately warm and humid climatic conditions in which chemical weathering processes are prevalent, to illite- and chlorite-dominated assemblages, indicative of cooler climates and physical weathering. Ice-rafted debris of both gravel and sand size occurs in large quantities in that interval and coincides with a change in the mode of carbonate deposition. Carbonate contents are relatively high and uniform (90%-95%) in strata younger than early Oligocene; in Oligocene to upper Miocene strata they fluctuate between 65% and 95%. Oligocene and Neogene hiatuses reflect an intensification of oceanic circulation and the increased erosional force of Circumpolar Deep Water. The long-term Cenozoic cooling trend was interrupted by a phase of early Miocene warming indicated by maximum Neogene smectite concentrations. Although ice-rafted debris is present only in minor amounts and mainly in the silt fraction of early Oligocene to late Miocene age, it shows that glaciers advanced to the East Antarctic shoreline throughout that time. Ice-rafting activity drastically increased in latest Miocene time, when carbonate deposition decreased and diatom ooze sedimentation started. This suggests a pronounced intensification of Antarctic glaciation combined with a northward migration of the Polar Front.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present centennial records of sea surface and upper thermocline temperatures in Core MD01-2378 from the Timor Sea, which provide new insights into the variability of the Indonesian outflow across the last two glacial terminations. Mg/Ca in Globigerinoides ruber (white s. s.) indicates an overall increase of 3.2 °C in sea surface temperature (SST) over Termination I. Following an early Holocene plateau at 11.3-6.4 ka, SSTs cooled by 0.6 °C during the middle to late Holocene (6.4-0.7 ka). The early Holocene warming occurred in phase with increasing northern hemisphere summer insolation, coinciding with northward displacement of the Intertropical Convergence Zone, enhanced boreal summer monsoon and expansion of the Indo-Pacific Warm Pool. Thermocline temperatures (Pulleniatina obliquiloculata Mg/Ca) gradually decreased from 24.5 to 21.5 °C since 10.3 ka, reflecting intensification of a cool thermocline throughflow. The vertical structure of the upper ocean in the Timor Sea evolved in similar fashion during the Holocene and MIS5e, although the duration of SST plateaux differed (11.3 to 6.4 ka in Termination I and from 129 to 119 ka in Termination II), which was probably due to the more intense northern hemisphere summer insolation during MIS 5e. During both terminations, SST increased simultaneously in the southern high latitudes and the tropical eastern Indian Ocean, suggesting virtually instantaneous atmospheric climate feedbacks between the high and low latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcareous nannofossil and planktic foraminiferal assemblages from ODP Hole 1210A in the northwestern Pacific Ocean were used to reconstruct surface-water conditions for the past 500 kyr. Stratigraphic control was provided by calcareous nannofossil events that are thought to be synchronous over a broad range of latitudes. Calcareous nannofossil and planktic foraminiferal assemblages and abundance patterns indicate the unlikelihood of long term (Milankovitch-scale) latitudinal shifts of the Kuroshio Extension over the last 500 kyr and illustrate two successive surface water-mass states, one that prevailed prior to 300 ka and one that existed after 300 ka. The relative abundance of very small placoliths and the absolute abundance of the upper photic zone (UPZ) coccolith species decrease abruptly at approximately 300 ka. The relative abundance of the lower photic zone (LPZ) species Florisphaera profunda greatly increases at the same time, although intervals during which the relative abundance of this taxon is very low or absent also occur prior to 300 ka. The absolute abundance of planktic foraminifera gradually increased after the 300-ka boundary, including peaks of Globoconella inflata. These assemblage and abundance changes suggest significant modifications to the surface water-mass structure. Surface water was weakly stratified prior to 300 ka, but alternated between intensely stratified and vertically mixed after 300 ka. Changes in the surface water-mass structure suggest an intensification of the East Asian summer and winter monsoon after 300 ka.