80 resultados para Ground Conditions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of distinct assemblages containing a high level of regional endemic species. Species richness was most strongly positively associated with the historical climatic conditions and negatively associated with severity of recent disturbance (treefalls) and current climatic conditions. Assemblage composition was associated with latitude and current and historical climatic conditions. Our results suggest that distributional patterns of flightless ground beetles are not only likely to be associated with factors that change with elevation (current climatic conditions), but also factors that are independent of elevation (recent disturbance and historical climatic conditions). Variation in historical vegetation stability explained both species richness and assemblage composition patterns, probably reflecting the significance of upland refugia at a geographic time scale. These findings are important for conservation management as upland habitats are under threat from climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The suite of environments and anthropogenic modifications of sub-Antarctic islands provide key opportunities to improve our understanding of the potential consequences of climate change and biological species invasions on terrestrial ecosystems. The profound impact of human introduced invasive species on indigenous biota, and the facilitation of establishment as a result of changing thermal conditions, has been well documented on the French sub-Antarctic Kerguelen Islands (South Indian Ocean). The present study provides an overview of the vulnerability of sub-Antarctic terrestrial communities with respect to two interacting factors, namely climate change and alien insects. We present datasets assimilated by our teams on the Kerguelen Islands since 1974, coupled with a review of the literature, to evaluate the mechanism and impact of biological invasions in this region. First, we consider recent climatic trends of the Antarctic region, and its potential influence on the establishment, distribution and abundance of alien insects, using as examples one fly and one beetle species. Second, we consider to what extent limited gene pools may restrict alien species' colonisations. Finally, we consider the vulnerability of native communities to aliens using the examples of one beetle, one fly, and five aphid species taking into consideration their additional impact as plant virus vectors. We conclude that the evidence assimilated from the sub-Antarctic islands can be applied to more complex temperate continental systems as well as further developing international guidelines to minimise the impact of alien species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In wide areas of Northern Siberia, glaciers have been absent since the Late Pleistocene. Therefore, ground ice and especially ice wedges are used as archives for paleoclimatic studies. In the present study, carried out on the Bykovsky Peninsula, eastern Lena Delta, we were able to distinguish ice wedges of different genetic units by means of oxygen and hydrogen isotopes. The results obtained by this study on the Ice Complex, a peculiar periglacial phenomenon, allowed the reconstruction of the climate history with a subdivision of a period of very cold winters (60-55 ka), followed by a long stable period of cold winter temperatures (50-24 ka), Between 20 ka and I I ka, climate warming is indicated in stable isotope compositions, most probably after the Late Glacial Maximum. At that time, a change of the marine source of the precipitation from a more humid source to the present North Atlantic source region was assumed. For the Ice Complex, a continuous age-height relationship was established, indicating syngenetic vertical ice wedge growth and sediment accumulation rates of 0.7 m/ky. During the Holocene optimum, ice wedge growth was probably limited due to the extensive formation of lacustrine environments. Holocene ice wedges in thermokarst depressions (alases) and thermoerosional valleys (logs) were formed after climate deterioration from about 4.5 ka until the present. Winter temperatures were warmer at this time as compared to the cooler Pleistocene. Migration of bound water between ice wedges and segregated ice may have altered the isotopic composition of old ice wedges. The presence of ice wedges as diagnostic features for permafrost conditions since 60 ka, implies that a large glacier extending over the Laptev Sea shelf did not exist. For the remote non-glaciated areas of Northern Siberia, ice wedges were established as a powerful climate archive.