22 resultados para Grey Level Co-occurrence Matrix
Resumo:
Mixed assemblages of Pliocene and Quaternary foraminifera occur within the Quaternary succession of the CRP-1 drillhole. Pliocene foraminifera are not present in the lowermost Unit 4.1. are rare in Unit 3.1 and 2.3, are relatively common in Units 2.2 and 2.1, and are absent in Unit 1.1. Fifteen and twelve species were documented in two of the samples from Units 2.2 and 2.1 respectively. A census count of foraminifera in a sample at 26.89 mbsf (Unit 2.2) indicated that 39% of the tests were from a Pliocene source, with the remaining 61% tests assigned to the in situ Quaternary assemblage. There appears to be a close correlation between the stratigraphic distribution of ice-rafted sediments and the test number and diversity of Pliocene taxa. It is concluded that Pliocene assemblages were not derived from submarine outcrops on Roberts Ridge, but are more likely to have been rafted to the site via major trunk valley drainage systems such as operated within the Mackay and Ferrar glacial valleys. The co-occurrence of marine biota (including foraminifera), fossil wood, pollen, and igneous clasts in the Quaternary succession of CRP-l, points to the marine and terrestrial facies of the Pliocene Sirius Group as a likely source. A major episode of erosion and transport of sediment into the offshore marine basins at about ~1 Ma may have been triggered by dynamism in the ice sheet-glacier system, an episode of regional uplift in the Transantarctic Mountains, sea level oscillations and associated changes in the land-to-sea drainage baselines, or some combination of these factors.
Resumo:
The purpose of the present study was to explore the composition and variation of the pico-, nano- and micro-plankton communities in Norwegian coastal waters and Skagerrak, and the co-occurrence of bacteria and viruses. Samples were collected along three cruise transects from Jaeren, Lista and Oksoy on the south coast of Norway and into the North Sea and Skagerrak. We also followed a drifting buoy for 55 h in Skagerrak in order to observe diel variations. Satellite ocean color images (SeaWiFS) of the chlorophyll a (chl a) distribution compared favorably to in situ measurements in open waters, while closer to the shore remote sensing chl a data was overestimated compared to the in situ data. Using light microscopy, we identified 49 micro- and 15 nanoplankton sized phototrophic forms as well as 40 micro- and 12 nanoplankton sized heterotrophic forms. The only picoeukaryote (0.2-2.0 µm) we identified was Resultor micron (Pedinophyceae). Along the transects a significant variation in the distribution and abundance of different plankton forms were observed, with Synechococcus spp and autotrophic picoeukaryotes as the most notable examples. There was no correlation between viruses and chl a, but between viruses and bacteria, and between viruses and some of the phytoplankton groups, especially the picoeukaryotes. Moreover, there was a negative correlation between nutrients and small viruses (Low Fluorescent Viruses) but a positive correlation between nutrients and large viruses (High Fluorescent Viruses). The abundance of autotrophic picoplankton, bacteria and viruses showed a diel variation in surface waters with higher values around noon and late at night and lower values in the evening. Synechococcus spp were found at 20 m depth 25-45 nautical miles from shore apparently forming a bloom that stretched out for more than 100 nautical miles from Skagerrak and up the south west coast of Norway. The different methods used for assessing abundance, distribution and diversity of microorganisms yielded complementary information about the plankton community. Flow cytometry enabled us to map the distribution of the smaller phytoplankton forms, bacteria and viruses in more detail than has been possible before but detection and quantification of specific forms (genus or species) still requires taxonomic skills, molecular analysis or both.
Resumo:
Fossil leaves of the Voltziales, an ancestral group of conifers, rank among the most common plant fossils in the Triassic of Gondwana. Even though the foliage taxon Heidiphyllum has been known for more than 150 years, our knowledge of the reproductive organs of these conifers still remains very incomplete. Seed cones assigned to Telemachus have become increasingly well understood in recent decades, but the pollen cones belonging to these Mesozoic conifers are rare. In this contribution we describe the first compression material of a voltzialean pollen cone from Upper Triassic strata of the Transantarctic Mountains. The cone can be assigned to Switzianthus Anderson & Anderson, a genus that was previously assumed to belong to an enigmatic group of pteridosperms from the Triassic Molteno Formation of South Africa. The similarities of cuticle and pollen morphology, together with co-occurrence at all known localities, indicate that Switzianthus most probably represents the pollen organ of the ubiquitous Heidiphyllum/Telemachus plant.
Resumo:
Deglacial reefs from Tahiti (IODP 310) feature a co-occurrence of zooxanthellate corals with microbialites that compose up to 80 vol% of the reef framework. The notion that microbialites tend to form in more nutrient-rich environments has previously led to the concept that such encrustations are considerably younger than the coral framework, and that they have formed in deeper storeys of the reef edifice, or that they represent severe disturbances of the reef ecosystem. As indicated by their repetitive interbedding with coralline red algae, the microbialites of this reef succession of Tahiti, however, formed immediately after coral growth under photic conditions. Clearly, the deglacial reef microbialites present in the IODP 310 cores did not follow disturbances such as drowning or suffocation by terrestrial material, and are not "disaster forms". Given that the corals and the microbialites developed in close spatial proximity, highly elevated nutrient levels caused by fluvial or groundwater transport from the volcanic hinterland are an unlikely cause for the exceptionally voluminous development of microbialites. That voluminous deglacial reef microbialites generally are restricted to volcanic islands, however, implies that moderately, and possibly episodically elevated nutrient levels favored this type of microbialite formation.
Resumo:
Gas hydrate samples from various locations in the Gulf of Mexico (GOM) differ considerably in their microstructure. Distinct microstructure characteristics coincide with discrete crystallographic structures, gas compositions and calculated thermodynamic stabilities. The crystallographic structures were established by X-ray diffraction, using both conventional X-ray sources and high-energy synchrotron radiation. The microstructures were examined by cryo-stage Field-Emission Scanning Electron Microscopy (FE-SEM). Good sample preservation was warranted by the low ice fractions shown from quantitative phase analyses. Gas hydrate structure II samples from the Green Canyon in the northern GOM had methane concentrations of 70-80% and up to 30% of C2-C5 of measured hydrocarbons. Hydrocarbons in the crystallographic structure I hydrate from the Chapopote asphalt volcano in the southern GOM was comprised of more than 98% methane. Fairly different microstructures were identified for those different hydrates: Pores measuring 200-400 nm in diameter were present in structure I gas hydrate samples; no such pores but dense crystal surfaces instead were discovered in structure II gas hydrate. The stability of the hydrate samples is discussed regarding gas composition, crystallographic structure and microstructure. Electron microscopic observations showed evidence of gas hydrate and liquid oil co-occurrence on a micrometer scale. That demonstrates that oil has direct contact to gas hydrates when it diffuses through a hydrate matrix.
Resumo:
In recent years there has been considerable discussion concerning the biostratigraphic correlations between planktonic zonations and the classical Neogene California benthic foraminiferal stages. One of the primary objectives of IPOD Leg 63 was to investigate these correlations and to determine the possibility of temporal variation of the benthic stages between California land sections and the outer Continental Borderland. In addition, it was anticipated that analyses of the benthic foraminiferal faunas at Site 468 would provide critical information on the paleoenvironmental history of the outer borderland. The provincial benthic Neogene foraminiferal stages were established by Kleinpell (1938) for the Miocene and Natland (1952) for the Pliocene-Pleistocene; both are well-documented in designated type sections. These stages have been used for interbasinal correlations, although time-transgressive problems have been suggested by several authors (Bandy, 1971; Ingle, 1967, 1973; Crouch and Bukry, 1979). An important biostratigraphic sequence occurs at Site 468, significant because of its relatively shallow depth of approximately 1700 meters. The samples yield well-preserved benthic foraminiferal faunas throughout most of the Neogene sequence and are accompanied by abundant well-preserved calcareous and siliceous planktonic assemblages. It is this co-occurrence of both planktonic and benthic faunas that enables the correlation of outer continental margin sediments with those of the classical land-based sections of southern California.
Resumo:
Planktonic foraminifers recovered from five sites drilled off western Portugal during Ocean Drilling Program Leg 173 are documented. Hole 1065A yielded planktonic foraminifers from Miocene sediments in Sections 173-1065A-1R-1 through 6R-2. Hole 1067A penetrated middle Eocene sediments containing planktonic foraminifers in Section 173-1067A-1R-1 through Lower Eocene planktonic foraminiferal horizons to Section 12R-CC. Hole 1068A yielded planktonic foraminiferal assemblages from middle Eocene sediments at Section 173-1068A-1R-1 to Maastrichtian sediments at Section 173-1068A-15R-3, whereas Hole 1069A contained middle Eocene taxa in Section 173-1069A-1R-1 through Campanian/Maastrichtian forms in Section 173-1069A-15R-2. All of the planktonic foraminifers recovered from these sites are of poor to moderately good preservation and are variable in abundance. Hole 1070A yielded only six planktonic foraminifers, with the assemblages being dominated by benthic foraminifers and fish teeth. The co-occurrence of other microfossil groups, including benthic foraminifers, are only briefly discussed here. The lower Miocene biosiliceous facies recorded in Hole 1065A is considered to be coeval with a similar facies found in onshore sections farther to the east, in southern Spain.
Resumo:
Serpentinization of abyssal peridotites is known to produce extremely reducing conditions as a result of dihydrogen (H2,aq) release upon oxidation of ferrous iron in primary phases to ferric iron in secondary minerals by H2O.We have compiled and evaluated thermodynamic data for Fe-Ni-Co-O-S phases and computed phase relations in fO2,g-fS2,g and aH2,aq-aH2S,aq diagrams for temperatures between 150 and 400°C at 50MPa.We use the relations and compositions of Fe-Ni-Co-O-S phases to trace changes in oxygen and sulfur fugacities during progressive serpentinization and steatitization of peridotites from the Mid-Atlantic Ridge in the 15°20'N Fracture Zone area (Ocean Drilling Program Leg 209). Petrographic observations suggest a systematic change from awaruite- magnetite-pentlandite and heazlewoodite-magnetite-pentlandite assemblages forming in the early stages of serpentinization to millerite-pyrite-polydymite-dominated assemblages in steatized rocks. Awaruite is observed in all brucite-bearing partly serpentinized rocks. Apparently, buffering of silica activities to low values by the presence of brucite facilitates the formation of large amounts of hydrogen, which leads to the formation of awaruite. Associated with the prominent desulfurization of pentlandite, sulfide is removed from the rock during the initial stage of serpentinization. In contrast, steatitization indicates increased silica activities and that highsulfur-fugacity sulfides, such as polydymite and pyrite-vaesite solid solution, form as the reducing capacity of the peridotite is exhausted and H2 activities drop. Under these conditions, sulfides will not desulfurize but precipitate and the sulfur content of the rock increases. The co-evolution of fO2,g-fS2,g in the system follows an isopotential of H2S,aq, indicating that H2S in vent fluids is buffered. In contrast, H2 in vent fluids is not buffered by Fe-Ni-Co-O-S phases, which merely monitor the evolution of H2 activities in the fluids in the course of progressive rock alteration.The co-occurrence of pentlandite- awaruite-magnetite indicates H2,aq activities in the interacting fluids near the stability limit of water. The presence of a hydrogen gas phase would add to the catalyzing capacity of awaruite and would facilitate the abiotic formation of organic compounds.
Resumo:
In this study multibeam angular backscatter data acquired in the eastern slope of the Porcupine Seabight are analysed. Processing of the angular backscatter data using the 'NRGCOR' software was made for 29 locations comprising different geological provinces like: carbonate mounds, buried mounds, seafloor channels, and inter-channel areas. A detailed methodology is developed to produce a map of angle-invariant (normalized) backscatter data by correcting the local angular backscatter values. The present paper involves detailed processing steps and related technical aspects of the normalization approach. The presented angle-invariant backscatter map possesses 12 dB dynamic range in terms of grey scale. A clear distinction is seen between the mound dominated northern area (Belgica province) and the Gollum channel seafloor at the southern end of the site. Qualitative analyses of the calculated mean backscatter values i.e., grey scale levels, utilizing angle-invariant backscatter data generally indicate backscatter values are highest (lighter grey scale) in the mound areas followed by buried mounds. The backscatter values are lowest in the inter-channel areas (lowest grey scale level). Moderate backscatter values (medium grey level) are observed from the Gollum and Kings channel data, and significant variability within the channel seafloor provinces. The segmentation of the channel seafloor provinces are made based on the computed grey scale levels for further analyses based on the angular backscatter strength. Three major parameters are utilized to classify four different seafloor provinces of the Porcupine Seabight by employing a semi-empirical method to analyse multibeam angular backscatter data. The predicted backscatter response which has been computed at 20° is the highest for the mound areas. The coefficient of variation (CV) of the mean backscatter response is also the highest for the mound areas. Interestingly, the slope value of the buried mound areas are found to be the highest. However, the channel seafloor of moderate backscatter response presents the lowest slope and CV values. A critical examination of the inter-channel areas indicates less variability within the estimated three parameters.
Resumo:
We analyzed samples from ODP Holes 652A and 654A (Leg 107, Tyrrhenian Sea) for the amount, type, and thermal maturity of organic matter. The sediments encompass clastic and biogenic lithologies, which were deposited on the passive margin east of Sardinia since the late Miocene to the Pleistocene. Marine, hypersaline/evaporitic, lacustrine/riverine, and finally hemipelagic marine conditions with occasional anoxic(?) interludes gave rise to very diverse sedimentary facies. The majority of samples is lean in organic matter (<0.2% TOC). Notable exceptions are Tortonian sediments (TOC average 0.3%), Messinian oil shales from Core 107-652A-64R (up to 11% TOC), Messinian lacustrine/fluvial sediments from Hole 652A (TOC average 0.42%,), and Pleistocene sapropel samples (>2% TOC). The Messinian oil shale in Hole 652A appears to be the only mature hydrocarbon source rock. In general, Pliocene sediments are the leanest and least mature samples. Pleistocene and Pliocene samples derive organic matter from a marine source. In spite of obvious facies differences in the Messinian between the two sites, pyrolysis results are not conclusive in separating hypersaline facies of Site 654 from the fresh water facies of Site 652, because both appear to have received terrestrial organic tissue as the main component of TOC. It is apparent from the distribution of maximum pyrolysis temperatures that heat flow must have been considerably higher at Site 652 on the lower margin in the Messinian. Molecular maturity indices in lipid extracts substantiate the finding that the organic matter in Tortonian and Messinian samples from Hole 654A is immature, while thermal maturation is more advanced in coeval samples from Hole 652A. Analyses of lipid biomarkers showed that original odd-even predominance was preserved in alkanes and alkylcyclohexanes from Messinian samples in Hole 654A, while thermal maturation had removed any odd-even predominance in Hole 652A. Isomerization data of hopanes and steranes support these differences in thermal history for the two sites. Hopanoid distribution further suggests that petroleum impregnation from a deeper, more mature source resulted in the co-occurrence of immature and mature groups of pentacyclic biomarkers. Even though the presence of 4-methylsteranes may imply that dinoflagellates were a major source for organic matter in the oil shale interval of Hole 652, we did not find intact dinoflagellates or related nonskeletal algae during microscopic investigation of the organic matter in the fine laminations. Morphologically, the laminations resemble bacterial mats.
Resumo:
The effects of coastal acidification on the growth and toxicity of the saxitoxin-producing dinoflagellate Alexandrium fundyense were examined in culture and ecosystem studies. In culture experiments, Alexandrium strains isolated from Northport Bay, New York, and the Bay of Fundy, Canada, grew significantly faster (16-190%; p < 0.05) when exposed to elevated levels of PCO2 ( 90-190 Pa=900-1900 µatm) compared to lower levels ( 40 Pa=400 µatm). Exposure to higher levels of PCO2 also resulted in significant increases (71-81%) in total cellular toxicity (fg saxitoxin equivalents/cell) in the Northport Bay strain, while no changes in toxicity were detected in the Bay of Fundy strain. The positive relationship between PCO2 enrichment and elevated growth was reproducible in natural populations from New York waters. Alexandrium densities were significantly and consistently enhanced when natural populations were incubated at 150 Pa PCO2 compared to 39 Pa. During natural Alexandrium blooms in Northport Bay, PCO2 concentrations increased over the course of a bloom to more than 170 Pa and were highest in regions with the greatest Alexandrium abundances, suggesting Alexandrium may further exacerbate acidification and/or be especially adapted to these acidi-fied conditions. The co-occurrence of Alexandrium blooms and elevated PCO2 represents a previously unrecognized, compounding environmental threat to coastal ecosystems. The ability of elevated PCO2 to enhance the growth and toxicity of Alexandrium indicates that acidification promoted by eutrophication or climate change can intensify these, and perhaps other, harmful algal blooms.
Resumo:
A number of C25 and C30 highly branched isoprenoid (HBI) sulphur compounds (E.G., thiolanes, 1-oxo-thiolanes, thiophenes, and benzo[b]thiophenes) with 2,6,10,14-tetramethyl-7-(3-methylpentyl)pentadecane and 2,6,10,14,18-pentamethyl-7-(3-methylpentyl)nonadecane carbon skeletons were identified in sediments, ranging from Holocene to Upper Cretaceous. These identifications are based on mass spectral characterisation, desulphurisation, and, in some cases, by comparison of mass spectral and relative retention time data with those of authentic standards. The presence of unsaturated C25 and C30 HBI thiolanes in a Recent sediment from the Black Sea (age 3-6 ka) strongly supports their formation during early diagenesis. The co-occurrence of HBI polyenes (C25 and C30) and unsaturated HBI thiolanes (C25 and C30) possessing two double bonds less than the corresponding HBI polyenes, in this Recent sediment, testifies to the formation of unsaturated HBI thiolanes by a reaction of inorganic sulphur species with double bonds of the HBI polyenes. Furthermore, a diagenetic scheme for HBI sulphur compounds is proposed based on the identification of HBI sulphur compounds in sediment samples with different maturity levels.
Resumo:
The late Neogene evolution of the Arctic to Subarctic region is poorly understood due to few available records and poor age control. At the margin of the Arctic Ocean, Yermak Plateau Ocean Drilling Program (ODP) Hole 911A is strategically located for establishing a stratigraphic framework for the Arctic. Here we present dinoflagellate cyst and acritarch data from 24 stratigraphic levels in the lower part (474.26-505.64 metres below the seafloor (mbsf)) of ODP Hole 911A. The marine palynomorphs indicate a latest Miocene to earliest Pliocene age (between 5.8 and 5.0 Ma) for the base of the hole based on the co-occurrence of the dinoflagellate cyst Barssidinium evangelineae and acritarch Lavradosphaera crista. Our age estimate for the sediments can possibly be further refined to 5.0-5.33 Ma based on the presence of Achomosphaera andalousiensis suttonensis, which apparently has a range restricted to the Pliocene. An age close to the Miocene/Pliocene boundary agrees with the planktonic foraminifer data. Together with recently available magnetostratigraphic data, the base of the hole is likely to be placed at ~5.2 Ma. This new chronostratigraphy is a first step towards a better understanding of the late Neogene palaeoenvironment for the Yermak Plateau and also for the wider Arctic to Subarctic region. The terrestrial and fresh water palynomorphs were most likely redistributed and/or displaced from the shelf towards deeper parts of the basin during contourite deposition under the influence of the West Spitsbergen Current. The in situ marine dinoflagellate cyst assemblage contains a mixture of cool water and thermophilic taxa, indicating sea-ice free, cool-temperate, warmer than present conditions at the Yermak Plateau. Rivers were likely the source for the freshwater influence.
Resumo:
Understanding changes over time in the distribution of interacting native and invasive species that may be symptomatic of competitive exclusion is critical to identify the need for and effectiveness of management interventions. Occupancy models greatly increase the robustness of inference that can be made from presence/absence data when species are imperfectly detected, and recent novel developments allow for the quantification of the strength of interaction between pairs of species. We used a two-species multi-season occupancy model to quantify the impact of the invasive American mink on the native European mink in Spain through the analysis of their co-occurrence pattern over twelve years (2000 - 2011) in the entire Spanish range of European mink distribution, where both species were detected by live trapping but American mink were culled. We detected a negative temporal trend in the rate of occupancy of European mink and a simultaneous positive trend in the occupancy of American mink. The species co-occurred less often than expected and the native mink was more likely to become extinct from sites occupied by the invasive species. Removal of American mink resulted in a high probability of local extinction where it co-occurred with the endemic mink, but the overall increase in the probability of occupancy over the last decade indicates that the ongoing management is failing to halt its spread. More intensive culling effort where both species co-exist as well as in adjacent areas where the invasive American mink is found at high densities is required in order to stop thedecline of European mink.