44 resultados para Galen.


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-scale studies of ocean biogeochemistry and carbon cycling have often partitioned the ocean into regions along lines of latitude and longitude despite the fact that spatially more complex boundaries would be closer to the true biogeography of the ocean. Herein, we define 17 open-ocean biomes classified from four observational data sets: sea surface temperature (SST), spring/summer chlorophyll a concentrations (Chl a), ice fraction, and maximum mixed layer depth (maxMLD) on a 1° × 1° grid. By considering interannual variability for each input, we create dynamic ocean biome boundaries that shift annually between 1998 and 2010. Additionally we create a core biome map, which includes only the grid cells that do not change biome assignment across the 13 years of the time-varying biomes. These biomes can be used in future studies to distinguish large-scale ocean regions based on biogeochemical function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficiency of the biological pump of carbon to the deep ocean depends largely on the biologically mediated export of carbon from the surface ocean and its remineralization with depth. Global satellite studies have primarily focused on chlorophyll concentration and net primary production (NPP) to understand the role of phytoplankton in these processes. Recent satellite retrievals of phytoplankton composition now allow for the size of phytoplankton cells to be considered. Here, we improve understanding of phytoplankton size structure impacts on particle export, remineralization and transfer. Particulate organic carbon (POC) flux observations from sediment traps and 234Th are compiled across the global ocean. Annual climatologies of NPP, percent microplankton, and POC flux at four time series locations and within biogeochemical provinces are constructed, and sinking velocities are calculated to align surface variables with POC flux at depth. Parameters that characterize POC flux vs. depth (export flux ratio, labile fraction, remineralization length scale) are then fit to the aligned dataset. Times of the year dominated by different size compositions are identified and fit separately in regions of the ocean where phytoplankton cell size showed enough dynamic range over the annual cycle. Considering all data together, our findings support the paradigm of high export flux but low transfer efficiency in more productive regions and vice versa for oligotrophic regions. However, when parsing by dominant size class, we find periods dominated by small cells to have both greater export flux and lower transfer efficiency than periods when large cells comprise a greater proportion of the phytoplankton community.

Relevância:

10.00% 10.00%

Publicador: