69 resultados para GROUND WATER
Resumo:
Mineralogical and H, O, Sr, and Nd isotope compositions have been analyzed on a set of representative samples from the 17-m.y. section in ODP Leg 116 Holes 717C and 718C. Based on the mineralogical composition of the fraction <2 µm together with the lithogenic-biogenic composition of the fraction >63 µm, the whole section can be subdivided into three major periods of sedimentation. Between 17.1 and 6 m.y., and between 0.8 m.y. to present, the sediments are characterized by sandy and silty turbiditic inputs with a high proportion of minerals derived from a gneissic source without alteration. In the fraction <2 µm, illite and chlorite are dominant over smectite and kaolinite. The granulometric fraction >63 µm contains quartz, muscovite, biotite, chlorite, and feldspars. The 6-to 0.8-m.y. period is represented by an alternation of sandy/silty horizons, muds, and calcareous muds rich in smectite, and kaolinite (50% to 85% of the fraction <2 µm) and bioclastic material. The presence of smectite and kaolinite, as well as the 18O/16O and the 87Sr/86Sr ratios of the fraction <2 µm, imply an evolution in a soil environment and exchanges with meteoric ground water. The ranges of isotopic compositions are limited throughout the section: d18O quartz = 11.7 to 13.3 per mil, 87Sr/86Sr = 0.733 to 0.760 and epsilon-Nd (0) = -17.4 to -13.8. These values are within those of the High Himalaya Crystalline series, and they are considered to reflect this source region. The data imply that, since 17 Ma, this formation has supplied the major part of the eroded material.
Resumo:
Fifteen iron oxide accumulations from the bottoms of two Finnish lakes ("lake ores") were found to contain as much as 50% Fe. Differential X-ray powder diffraction and selective dissolution by oxalate showed that the samples consisted of poorly crystallized goethite and ferrihydrite. The crust ores of one lake had higher ferrihydrite to goethite ratios than the nodular ores of the other lake. The higher ferrihydrite proportion was attributed to a higher rate of Fe2+ supply from the ground water and/or a higher rate of oxidation as a function of water depth and bottom-sediment permeability. Values of Al-for-Fe substitution of the goethites determined from unit-cell dimensions agreed with those obtained from chemical extraction if the unit-cell volume rather than the c dimension was used. In very small goethite crystals a slight expansion of the a unit-cell dimension is probaby compensated by a corresponding contraction of the c dimension, so that a contraction of the c dimension need not necessarily be caused by Al substitution. The goethites of the two lakes differed significantly in their Al-for-Fe substitutions and hence in their unit-cell sizes, OH-bending characteristics, dehydroxylation temperatures, dissolution kinetics, and Mössbauer parameters. The difference in Al substitution (0 vs. 7 mole %) is attributed to the Al-supplying power of the bottom sediments: the silty-clayey sediments in one lake appear to have supplied A1 during goethite formation, whereas the gravelly-sandy sediments in the other lake did not. The compositions of the goethites thus reflect their environments of formation.
Resumo:
Ostracode species assemblages and stable oxygen and carbon isotope ratios of living and recent ostracodes, together with delta18O and delta13C_DIC values of host water samples, provide a first data set that characterizes a wide range of modern aquatic environments in the Laguna Cari-Laufquen (41°S, 68 - 69°W) and the Lago Cardiel area (48 - 49°S, 70 - 71°W) in Patagonia, Argentina. This data set will ultimately be used to interpret and calibrate data acquired from lake sediment cores with the goal of reconstructing past climate. Species assemblages and isotope values can be assigned to three groups; (1) springs, seeps and streams, (2) permanent ponds and lakes, and (3) ephemeral ponds and lakes. Springs, seeps and streams are characterized by Darwinula sp., Heterocypris incongruens, Eucypris fontana, Amphicypris nobilis and Ilyocypris ramirezi. Ostracode and water isotope values range between -13 and -5 per mil for oxygen, and between -15 and -3 per mil for carbon. They are the most negative of the entire sample set, reflecting ground water input with little or no evaporative enrichment. Limnocythere patagonica, Eucypris labyrinthica, Limnocythere sp. and Eucypris aff. fontana are typical species of permanent ponds and lakes. Isotope values indicate high degree of evaporation of lake waters relative to feeder springs and streams and range between -7 and +5 per mil for oxygen, and -5 and +4 per mil for carbon. Limnocythere rionegroensis is the dominant species in ephemeral ponds and lakes. These systems display the most enriched isotope values in both ostracodes and host waters, extending from -5 to +7 per mil for oxygen, and from -5 to +6 per mil for carbon. Living ostracodes show a positive offset from equilibrium values of up to 2 per mil for oxygen. Carbon-isotope values are up to 6? more negative than equilibrium values in highly productive pools. Comparison of ostracode and host water isotope signals permits assessment of the life span of the aquatic environments. Valves from dead ostracodes collected from ephemeral ponds and lakes show a wide scatter with each sample providing a snapshot of the seasonal history of the host water. The presence of the stream species Ilyocypris ramirezi and a wide range of ostracode isotope values suggest that ephemeral ponds and lakes are fed by streams during spring run-off and seasonally dry. A temporary character is also indicated by Heterocypris incongruens, a drought-resistant species that occupies most springs and seeps. In addition, Limnocythere rionegroensis has adjusted its reproduction strategies to its environment. Whereas only females were collected in fresh host waters, males were found in ephemeral ponds and lakes with higher solute content. Sexual reproduction seems to be the more successful reproduction strategy in high and variable salinities and seasonal droughts. The temporary character of the aquatic environments shows that the availability of meteoric water controls the life span of host waters and underlines the sensitivity of the area to changes in precipitation.
Resumo:
The measurement of short-lived 223Ra often involves a second measurement for supported activities, which represents 227Ac in the sample. Here we exploit this fact, presenting a set of 284 values on the oceanic distribution of 227Ac, which was collected when analyzing water samples for short-lived radium isotopes by the radium delayed coincidence counting system. The present work compiles 227Ac data from coastal regions all over the northern hemisphere, including values from ground water, from estuaries and lagoons, and from marine end-members. Deep-sea samples from a continental slope off Puerto Rico and from an active vent site near Hawaii complete the overview of 227Ac near its potential sources. The average 227Ac activities of nearshore marine end-members range from 0.4 dpm/m**3 at the Gulf of Mexico to 3.0 dpm m? 3 in the coastal waters of the Korean Strait. In analogy to 228Ra, we find the extension of adjacent shelf regions to play a substantial role for 227Ac activities, although less pronounced than for radium, due to its weaker shelf source. Based on previously published values, we calculate an open ocean 227Ac inventory of 1.35 * 1018 dpm 227Acex in the ocean, which corresponds to 37 moles, or 8.4 kg. This implies a flux of 127 dpm/m**2/y from the deep-sea floor. For the shelf regions, we obtain a global inventory of 227Ac of 4.5 * 10**15 dpm, which cannot be converted directly into a flux value, as the regional loss term of 227Ac to the open ocean would have to be included. Ac has so far been considered to behave similarly to Ra in the marine environment, with the exception of a strong Ac source in the deep-sea due to 231Paex. Here, we present evidence of geochemical differences between Ac, which is retained in a warm vent system, and Ra, which is readily released [Moore, W.S., Ussler, W. and Paull, C.K., 2008-this issue. Short-lived radium isotopes in the Hawaiian margin: Evidence for large fluid fluxes through the Puna Ridge. Marine Chemistry]. Another potential mechanism of producing deviations in 227Ac/228Ra and daughter isotope ratios from the expected production value of lithogenic material is observed at reducing environments, where enrichment in uranium may occur. The presented data here may serve as a reference for including 227Ac in circulation models, and the overview provides values for some end-members that contribute to the global Ac distribution.
Resumo:
Manual and low-tech well drilling techniques have potential to assist in reaching the United Nations' millennium development goal for water in sub-Saharan Africa. This study used publicly available geospatial data in a regression tree analysis to predict groundwater depth in the Zinder region of Niger to identify suitable areas for manual well drilling. Regression trees were developed and tested on a database for 3681 wells in the Zinder region. A tree with 17 terminal leaves provided a range of ground water depth estimates that were appropriate for manual drilling, though much of the tree's complexity was associated with depths that were beyond manual methods. A natural log transformation of groundwater depth was tested to see if rescaling dataset variance would result in finer distinctions for regions of shallow groundwater. The RMSE for a log-transformed tree with only 10 terminal leaves was almost half that of the untransformed 17 leaf tree for groundwater depths less than 10 m. This analysis indicated important groundwater relationships for commonly available maps of geology, soils, elevation, and enhanced vegetation index from the MODIS satellite imaging system.
Resumo:
The processes of formation of iron-manganese nodules and crusts have been studied on an example of the Eningi-Lampi lake, Central Karelia, where the relationships between the source of the ore, sedimentary materials and areas of their accumulation prove relatively simple and apparent. Nodules and crusts are composed mostly by birnessite, amorphous hydrous ferric oxides and hydro-goethite. They occur, as a rule, on the surface of relatively coarse-grained sediments, at the ground-water interface. Considerably in a lesser extent are found the nodules in the upper part (0ó5 cm) of the red-brown flooded watery mud covering dark-green, black muds. The nucleus of nodules, or the basis of crusts of iron-manganese hydroxides are various, frequently altered, fragments of rocks, sometimes pieces of wood. Distribution of Mn and Fe in sediments and waters of the lake is considered. It is shown that the Mn/Fe ratio decreases considerably in waters, sediments and nodules of the lake while moving off a distance from the source. The main role in the process of formation of iron-manganese nodules belongs to the selective chemosorption interaction (with auto-catalytic oxidation) of component-bearing solutions with active surfaces.
Resumo:
Thermokarst lakes are thought to have been an important source of methane (CH4) during the last deglaciation when atmospheric CH4 concentrations increased rapidly. Here we demonstrate that meltwater from permafrost ice serves as an H source to CH4 production in thermokarst lakes, allowing for region-specific reconstructions of dD-CH4 emissions from Siberian and North American lakes. dD CH4 reflects regionally varying dD values of precipitation incorporated into ground ice at the time of its formation. Late Pleistocene-aged permafrost ground ice was the dominant H source to CH4 production in primary thermokarst lakes, whereas Holocene-aged permafrost ground ice contributed H to CH4 production in later generation lakes. We found that Alaskan thermokarst lake dD-CH4 was higher (-334 ± 17 per mil) than Siberian lake dD-CH4 (-381 ± 18 per mil). Weighted mean dD CH4 values for Beringian lakes ranged from -385 per mil to -382 per mil over the deglacial period. Bottom-up estimates suggest that Beringian thermokarst lakes contributed 15 ± 4 Tg CH4 /yr to the atmosphere during the Younger Dryas and 25 ± 5 Tg CH4 /yr during the Preboreal period. These estimates are supported by independent, top-down isotope mass balance calculations based on ice core dD-CH4 and d13C-CH4 records. Both approaches suggest that thermokarst lakes and boreal wetlands together were important sources of deglacial CH4.
Resumo:
In order to examine whether the paleoceanographic nutrient proxies, d13C and cadmium/calcium in foraminiferal calcite, are well coupled to nutrients in the region of North Atlantic Deep Water formation, we present da ta from two transects of the Greenland-Iceland-Norwegian Seas. Along Transect A (74.3°N, 18.3°E to 75.0°N, 12.5°W, 15 stations), we measured phosphate and Cd concentrations of modern surface sea water. Along Transect B (64.5°N, 0.7°W to 70.4°N, 18.2°W, 14 stations) we measured Cd/Ca ratios and d13C of the planktonic foraminifera Neogloboquadrina pachyderma sinistral in core top sediments. Our results indicate that Cd and phosphate both vary with surface water mass and are well correlated along Transect A. Our planktonic foraminiferal d13C data indicate similar nutrient variation with water mass along Transect B. Our Cd/Ca data hint at the same type of nutrient variability, but interpretations are hampered by low values close to the detection limit of this technique and therefore relatively large error bars. We also measured Cd and phosphate concentrations in water depth profiles at three sites along Transect A and the d13C of the benthic foraminifera Cibicidoides wuellerstorfi along Transect B. Modern sea water depth profiles along Transect A have nutrient depletions at the surface and then constant values at depths greater than 100 meters. The d13C of planktonic and benthic foraminifera from Transect B plotted versus depth also reflect surface nutrient depletion and deep nutrient enrichment as seen at Transect A, with a small difference between intermediate and deep waters. Overall we see no evidence for decoupling of Cd/Ca ratio and d13C in foraminiferal calcite from water column nutrient concentrations along these transects in a region of North Atlantic Deep Water formation.