22 resultados para Frequency up-conversion
Resumo:
Mesozooplankton is collected by vertical tows within the Black sea water body mass layer in the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).
Resumo:
This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2006 to a depth of 30 cm. Three samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Sampling locations were less than 30 cm apart from sampling locations in 2002. Soil samples were segmented into 5 cm depth segments in the field (resulting in six depth layers) and made into composite samples per depth. Subsequently, samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, samples in years after 2002 were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s**-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.
Total nitrogen from solid phase in the Jena Experiment (Main Experiment up to 30cm depth, year 2008)
Resumo:
This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2008 to a depth of 30 cm. Three independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were segmented to a depth resolution of 5 cm in the field, giving six depth subsamples per core, and made into composite samples per depth. Sampling locations were less than 30 cm apart from sampling locations in other years. Samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, the samples were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).
Resumo:
This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling to a depth of 1m was performed before sowing in April 2002. Three independent samples per plot were taken of all plots in block 2 using a motor-driven soil column cylinder (Cobra, Eijkelkamp, 8.3 cm in diameter). Soil samples were dried at 40°C and segmented to a depth resolution of 5 cm giving 20 depth subsamples per core. All samples were analyzed independently. All soil samples were passed through a sieve with a mesh size of 2 mm. Rarely present visible plant remains were removed using tweezers. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).
Total nitrogen from solid phase in the Jena Experiment (Main Experiment up to 30cm depth, year 2004)
Resumo:
This data set contains measurements of total nitrogen from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2004 to a depth of 30 cm. Three independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were segmented to a depth resolution of 5 cm in the field, giving six depth subsamples per core, and made into composite samples per depth. Sampling locations were less than 30 cm apart from sampling locations in other years. Samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, the samples were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany).
Resumo:
This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2008 to a depth of 30 cm. Three samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Sampling locations were less than 30 cm apart from sampling locations in 2002. Soil samples were segmented into 5 cm depth segments in the field (resulting in six depth layers) and made into composite samples per depth. Subsequently, samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, samples in years after 2002 were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s**-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.
Resumo:
This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed before sowing in April 2002. Five independent samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Soil samples were dried at 40°C and then segmented to a depth resolution of 5 cm giving six depth subsamples per core. All samples were analyzed independently and averaged values per depth layer are reported. Soil samples were passed through a sieve with a mesh size of 2 mm. Rarely present visible plant remains were removed using tweezers. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.
Resumo:
This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Stratified soil sampling to a depth of 1 m was repeated in April 2007 (as had been done before sowing in April 2002). Three independent samples per plot were taken of all plots in block 2 using a motor-driven soil column cylinder (Cobra, Eijkelkamp, 8.3 cm in diameter). Soil samples were dried at 40°C and segmented to a depth resolution of 5 cm giving 20 depth subsamples per core. All samples were analyzed independently. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, the samples in 2007 were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s**-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.
Resumo:
This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Stratified soil sampling to a depth of 1 m was performed before sowing in April 2002. Three independent samples per plot were taken of all plots in block 2 using a motor-driven soil column cylinder (Cobra, Eijkelkamp, 8.3 cm in diameter). Soil samples were dried at 40°C and segmented to a depth resolution of 5 cm giving 20 depth subsamples per core. All samples were analyzed independently. All soil samples were passed through a sieve with a mesh size of 2 mm. Rarely present visible plant remains were removed using tweezers. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s**-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.
Resumo:
This data set contains soil carbon measurements (Organic carbon, inorganic carbon, and total carbon; all measured in dried soil samples) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Stratified soil sampling was performed in April 2004 to a depth of 30 cm. Three samples per plot were taken using a split tube sampler with an inner diameter of 4.8 cm (Eijkelkamp Agrisearch Equipment, Giesbeek, the Netherlands). Sampling locations were less than 30 cm apart from sampling locations in 2002. Soil samples were segmented into 5 cm depth segments in the field (resulting in six depth layers) and made into composite samples per depth. Subsequently, samples were dried at 40°C. All soil samples were passed through a sieve with a mesh size of 2 mm. Because of much higher proportions of roots in the soil, samples in years after 2002 were further sieved to 1 mm according to common root removal methods. No additional mineral particles were removed by this procedure. Total carbon concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s**-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). We measured inorganic carbon concentration by elemental analysis at 1150°C after removal of organic carbon for 16 h at 450°C in a muffle furnace. Organic carbon concentration was calculated as the difference between both measurements of total and inorganic carbon.
Resumo:
The SES_UNLUATA_GR1-Mesozooplankton faecal pellet production rates dataset is based on samples taken during March and April 2008 in the Northern Libyan Sea, Southern Aegean Sea and in the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the 0-100 m layer or within the Black sea water body mass layer in the case of the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets and are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).
Resumo:
The SES_GR1-Mesozooplankton faecal pellet production rates dataset is based on samples taken during April 2008 in the North-Eastern Aegean Sea. Mesozooplankton is collected by vertical tows within the Black sea water body mass layer in the NE Aegean, using a WP-2 200 µm net equipped with a large non-filtering cod-end (10 l). Macrozooplankton organisms are removed using a 2000 µm net. A few unsorted animals (approximately 100) are placed inside several glass beaker of 250 ml filled with GF/F or 0.2 µm Nucleopore filtered seawater and with a 100 µm net placed 1 cm above the beaker bottom. Beakers are then placed in an incubator at natural light and maintaining the in situ temperature. After 1 hour pellets are separated from animals and placed in separated flasks and preserved with formalin. Pellets are counted and measured using an inverted microscope. Animals are scanned and counted using an image analysis system. Carbon- Specific faecal pellet production is calculated from a) faecal pellet production, b) individual carbon: Animals are scanned and their body area is measured using an image analysis system. Body volume is then calculated as an ellipsoid using the major and minor axis of an ellipse of same area as the body. Individual carbon is calculated from a carbon- total body volume of organisms (relationship obtained for the Mediterranean Sea by Alcaraz et al. (2003) divided by the total number of individuals scanned and c) faecal pellet carbon: Faecal pellet length and width is measured using an inverted microscope. Faecal pellet volume is calculated from length and width assuming cylindrical shape. Conversion of faecal pellet volume to carbon is done using values obtained in the Mediterranean from: a) faecal pellet density 1,29 g cm**3 (or pg µm**3) from Komar et al. (1981); b) faecal pellet DW/WW=0,23 from Elder and Fowler (1977) and c) faecal pellet C%DW=25,5 Marty et al. (1994).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March and October 2008. In October 2008, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).
Resumo:
As an estimate of plant-available N, this data set contains measurements of inorganic nitrogen (NO3-N and NH4-N, the sum of which is termed mineral N or Nmin) determined by extraction with 1 M KCl solution of soil samples from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m of the mineral soil from each of the experimental plots in March 2006. In October 2006 also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled. Measurements from the management experiment are separated into 0 to 0.08 m and 0.08 to 0.15 m. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, AutoAnalyzer, Seal, Burgess Hill, United Kingdom).