132 resultados para Fish farm water


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Members of the highly diverse bacterial phylum Verrucomicrobia are globally distributed in various terrestrial and aquatic habitats. They are key players in soils, but little is known about their role in aquatic systems. Thus, we applied newly designed 16S rRNA-targeted probe set for the identification of Verrucomicrobia and of clades within this phylum to a study concerning the seasonal abundance of Verrucomicrobia in waters of the humic lake Große Fuchskuhle (Germany) by catalyzed reporter deposition fluorescence in situ hybridization. The Lake Große Fuchskuhle is located in the large Mecklenburg-Brandenburg lake district near Berlin (53°10'N, 13°02'E). The lake was artificially divided into four basins (northwest, northeast, southwest, and southeast). We chose the two most contrasting basins, the acidotrophic humic southwestern (SW) basin with a high influx of allochthonous dissolved organic carbon (DOC) and the more mesotrophic northeastern (NE) basin, to study abundance and seasonality of Verrucomicrobia. Lake water was collected from depths of 0.5 m (oxic) and 4.5 m (seasonally anoxic) approximately trimonthly in 2000 (March, June, September and December). The lake hosted diverse Verrucomicrobia clades in all seasons. Either Spartobacteria (up to 19%) or Opitutus spp. (up to 7%) dominated the communities, whereas Prosthecobacter spp. were omnipresent in low numbers (<1%). Verrucomicrobial abundance and community composition varied between the seasons, and between more and less humic basins, but were rather stable in oxic and seasonally anoxic waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Subtropical oceanic gyres are the most extensive biomes on Earth where SAR11 and Prochlorococcus bacterioplankton numerically dominate the surface waters depleted in inorganic macronutrients as well as in dissolved organic matter. In such nutrient poor conditions bacterioplankton could become photoheterotrophic. We assessed the photoheterotrophy of the key microbial taxa in the North Atlantic oligotrophic gyre and adjacent regions. The experimental work was performed on board the Royal Research Ship James Cook (cruise no. JC53, October-November 2010) as part of the Atlantic Meridional Transect programme, and on board the Royal Research Ship Discovery (cruise no. D369, August-September 2011). At each station, samples were collected from 20m depth with a sampling rosette of 20-l Niskin bottles mounted on aconductivity-temperature-depth profiler. Samples were collected in 1 l thermos flasks (washed with10% v/v HCl) in the dark and processed immediately. Depth of 20m was chosen because it represents the mixed layer and it was the shallowest depth unaffected by the ship's movement, including thrusting, that could artificially affect microbial metabolism in nutrient-depleted stratified surfacewaters. Molecular identification of flow-sorted cells CARD-FISH was performed on flow-sorted cells to identify the groups for which uptake rates were measured. High nucleic acid-containing bacteria, based on SYBR Green DNA staining, that had virtually undetectable chlorophyll autofluorescence, were phylogenetically affiliated with Prochlorococcus,in agreement with our previously reported results (Zubkov et al., 2007; doi:10.1111/j.1462-2920.2007.01324.x).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Worldwide, coral reefs are challenged by multiple stressors due to growing urbanization, industrialization and coastal development. Coral reefs along the Thousand Islands off Jakarta, one of the largest megacities worldwide, have degraded dramatically over recent decades. The shift and decline in coral cover and composition has been extensively studied with a focus on large-scale gradients (i.e. regional drivers), however special focus on local drivers in shaping spatial community composition is still lacking. Here, the spatial impact of anthropogenic stressors on local and regional scales on coral reefs north of Jakarta was investigated. Results indicate that the direct impact of Jakarta is mainly restricted to inshore reefs, separating reefs in Jakarta Bay from reefs along the Thousand Islands further north. A spatial patchwork of differentially degraded reefs is present along the islands as a result of localized anthropogenic effects rather than regional gradients. Pollution is the main anthropogenic stressor, with over 80 % of variation in benthic community composition driven by sedimentation rate, NO2, PO4 and Chlorophyll a. Thus, the spatial structure of reefs is directly related to intense anthropogenic pressure from local as well as regional sources. Therefore, improved spatial management that accounts for both local and regional stressors is needed for effective marine conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotope analysis was performed on the structural carbonate of fish bone apatite from early and early middle Eocene samples (~55 to ~45 Ma) recently recovered from the Lomonosov Ridge by Integrated Ocean Drilling Program Expedition 302 (the Arctic Coring Expedition). The d18O values of the Eocene samples ranged from -6.84 per mil to -2.96 per mil Vienna Peedee belemnite, with a mean value of -4.89 per mil, compared to 2.77 per mil for a Miocene sample in the overlying section. An average salinity of 21 to 25 per mil was calculated for the Eocene Arctic, compared to 35 per mil for the Miocene, with lower salinities during the Paleocene Eocene thermal maximum, the Azolla event at ~48.7 Ma, and a third previously unidentified event at ~47.6 Ma. At the Azolla event, where the organic carbon content of the sediment reaches a maximum, a positive d13C excursion was observed, indicating unusually high productivity in the surface waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pingualuk Lake fills a deep crater in the Parc National des Pingualuit on the Ungava Peninsula (Nunavik, Canada) and is isolated from nearby surface waters. The main objectives of this study were to determine and compare the concentrations of two atmospherically derived contaminants, mercury and perfluorinated chemicals (PFCs), in the lake water column and fish of Pingualuk Lake and to assess the physical and biological factors influencing contaminant concentrations. Mercury concentrations in arctic char muscle tissue were comparable to those of char in other Arctic lakes, while the total amount of PFCs was below reported levels for remote lakes in the Arctic and elsewhere. Stable isotope and stomach content analyses were made to investigate the feeding ecology of the Pingualuk Lake arctic char population and indicated the possibility of multiple feeding groups. Genetics characteristics (MH and mtDNA) of fish from Pingualuk Lake revealed that this population is likely distinct from that of nearby Laflamme Lake. However, both arctic char populations exhibit differential variation of their allele families. Physical characteristics determined for Lake Pingualuk revealed that the water column was inversely stratified beneath the ice and extremely transparent to visible and ultraviolet radiation. The highest mercury concentrations (3- 6 pg/mL THg) occurred just beneath the ice surface in each lake. Pingualuk Lake, given its near pristine state and exceptional limnological features, may serve as a most valuable reference ecosystem for monitoring environmental stressors, such as contaminants, in the Arctic.