97 resultados para FENNOSCANDIAN SHIELD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sr and Nd isotopic compositions have been measured on the lithic fraction of last climatic cycle sediments from the North Atlantic (~40°N/~60°N), in order to identify the origins of the particles. From the reconstruction of their transport pathways, we deduce the mechanisms that explain their distributions. The main source regions are the Canadian shield (mostly the area of Baffin Bay and western Greenland), the Scandinavian shield, the European region (British Isles and Bay of Biscay), and Iceland. We observe a significant glacial/interglacial contrast, characterized by a dominant Icelandic input via near-bottom transport by North Atlantic Deep Water (NADW) during the interglacials and a largely continent-derived contribution of surface-transported, ice-rafted detritus (IRD) during the glacial period. During the last glacial period, the Heinrich events (abrupt, massive discharges of IRD) originated not only from the Laurentide ice sheet as heretofore envisioned but also from other sources. Three other major North Atlantic ice sheets (Fennoscandian, British Isles, and Icelandic) probably surged simultaneously, discharging ice and IRD into the North Atlantic. As opposed to theories implying a unique, Laurentide origin [Gwiazda et al., 1996 doi:10.1029/95PA03135] driven by an internal mechanism [MacAyeal, 1993 doi:10.1029/93PA02200], we confirm that the Icelandic and the Fennoscandian ice sheets also surged as recently proposed by other authors, and we here also distinguish a possible detrital contribution from the British Isles ice sheet. This pan-North Atlantic phenomenon thus requires a common regional, external forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zircons from the oldest magmatic and metasedimentary rocks in the Podolia domain of the Ukrainian shield were studied and dated by the U-Pb method on a NORDSIM secondary-ion mass spectrometer. Age of zircon cores in enderbite gneisses sampled in the Kazachii Yar and Odessa quarries on the opposite banks of the Yuzhnyi Bug River reaches 3790 Ma. Cores of terrigenous zircons in quartzites from the Odessa quarry as well as in garnet gneisses from the Zaval'e graphite quarry have age within 3650-3750 Ma. Zircon rims record two metamorphic events around 2750-2850 Ma and 1900-2000 Ma. Extremely low U content in zircons of the second age group indicates conditions of the granulite facies metamorphism in Paleoproterozoic within the Podolia domain. Measured data on orthorocks (enderbite-gneiss) and metasedimentary rocks unambiguously suggest existence of the ancient Paleoarchean crust in the Podolia (Dniester-Bug) domain of the Ukrainian shield. They contribute in our knowledge of scales of formation and geochemical features of the primordial crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In weakly indurated, nannofossil-rich, deep-sea carbonates compressional wave velocity is up to twice as fast parallel to bedding than normal to it. It has been suggested that this anisotropy is due to alignment of calcite c-axes perpendicular to the shields of coccoliths and shield deposition parallel to bedding. This hypothesis was tested by measuring the preferred orientation (fabric) of calcite c-axes in acoustic anisotropic, calcareous DSDP sediment samples by X-ray goniometry, and it was found that the maximum c-axis concentrations are by far too low to explain the anisotropies. The X-ray method is subject to a number of uncertainties due to preparatory and technical shortcomings in weakly indurated rocks. The most serious weaknesses are: sample preparation, volume of measured sample (fraction of a mm3), beam defocusing and background intensity corrections, combination of incomplete pole figures, and necessity of recalculation of the c-axis orientations from other crystallographic directions. Goniometry using thermal neutrons overcomes most of these difficulties, but it is time consuming. We test the interferences made about velocity anisotropy by X-ray studies about the concentration of c-axes in deep-sea carbonates by employing neutron texture goniometry to eight DSDP samples comprising mostly nannofossil material. Fabric and sonic velocity were determined directly on the core specimens, thus from the same rock volume and requiring no preparation. The c-axis orientation is obtained directly from the [0006] calcite diffraction peak without corrections. The fabrics are clearly defined, but weak (1.1 to 1.86 times uniform) with the maximum about normal to bedding. They have crudely orthorhombic symmetry, but are not axisymmetric around the bedding normal. The observed c-axis intensities, although higher than determined by the X-ray method on other samples, are by far too low to explain the observed acoustic anisotropies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

About 13 m of Cretaceous, tholeiitic basalt, ranging from normal (N-MORB) to transitional (T-MORB) mid-ocean-ridge basalts, was recovered at Ocean Drilling Program Site 843 west of the island of Hawaii. These moderately fractionated, aphyric lavas are probably representative of the oceanic basement on which the Hawaiian Islands were built. Whole-rock samples from parts of the cores exhibiting only slight, low-temperature, seawater alteration were analyzed for major element, trace element, and isotopic composition. The basalts are characterized by enrichment in the high field strength elements relative to N-MORB, by a distinct positive Eu anomaly, and by Ba/Nb and La/Nb ratios that are much lower than those of other crustal or mantle-derived rocks, but their isotope ratios are similar to those of present-day N-MORB from the East Pacific Rise. Hole 843A lavas are isotopically indistinguishable from Hole 843B lavas and are probably derived from the same source at a lower degree of partial melting, as indicated by lower Y/Nb and Zr/Nb ratios and by higher concentrations of light and middle rare earth elements and other incompatible elements relative to Hole 843B lavas. Petrographic and trace-element evidence indicates that the Eu anomaly was the result of neither plagioclase assimilation nor seawater alteration. The Eu anomaly and the enrichments in Ta, Nb, and possibly U and K relative to N-MORB apparently are characteristic of the mantle source. Age-corrected Nd and Sr isotopic ratios indicate that the source for the lavas recovered at ODP Site 843 was similar to the source for Southeast Pacific MORB. An enriched component within the Cretaceous mantle source of these basalts is suggested by their initial 208Pb/204Pb-206Pb/204Pb and epsilon-Nd-206Pb/204Pb ratios. The Sr-Pb isotopic trend of Hawaiian post-shield and post-erosional lavas cannot be explained by assimilation of oceanic crust with the isotopic composition of the Site 843 basalts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden, is discussed based on sub-bottom seismic records and sediment cores. The sea floor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjorden up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from the glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front retreated from the outermost shelf around 14.8 ka. A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was interrupted by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscandian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isfjorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice front terminated far out in the main fjord. The remnants of the Barents Sea Ice Sheet melted quickly away as a response to the Holocene warming around 10 ka.