182 resultados para Excursion glycémique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotope analysis was performed on the structural carbonate of fish bone apatite from early and early middle Eocene samples (~55 to ~45 Ma) recently recovered from the Lomonosov Ridge by Integrated Ocean Drilling Program Expedition 302 (the Arctic Coring Expedition). The d18O values of the Eocene samples ranged from -6.84 per mil to -2.96 per mil Vienna Peedee belemnite, with a mean value of -4.89 per mil, compared to 2.77 per mil for a Miocene sample in the overlying section. An average salinity of 21 to 25 per mil was calculated for the Eocene Arctic, compared to 35 per mil for the Miocene, with lower salinities during the Paleocene Eocene thermal maximum, the Azolla event at ~48.7 Ma, and a third previously unidentified event at ~47.6 Ma. At the Azolla event, where the organic carbon content of the sediment reaches a maximum, a positive d13C excursion was observed, indicating unusually high productivity in the surface waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution stable carbon isotope records for upper Paleocene - lower Eocene sections at Ocean Drilling Program Sites 1051 and 690 and Deep Sea Drilling Project Sites 550 and 577 show numerous rapid (40 - 60 kyr duration) negative excursions of up to 1 per mill. We demonstrate that these transient decreases are the expected result of nonlinear insolation forcing of the carbon cycle in the context of a long carbon residence time. The transients occur at maxima in Earth's orbital eccentricity, which result in high-amplitude variations in insolation due to forcing by climatic precession. The construction of accurate orbital chronologies for geologic sections older than ~ 35 Ma relies on identifying a high-fidelity recorder of variations in Earth's orbital eccentricity. We use the carbon isotope records as such a recorder, establishing a robust orbitally tuned chronology for latest Paleocene-earliest Eocene events. Moreover, the transient decreases provide a means of precise correlation among the four sites that is independent of magnetostratigraphic and biostratigraphic data at the <10^5-year scale. While the eccentricity-controlled transient decreases bear some resemblance to the much larger-amplitude carbon isotope excursion (CIE) that marks the Paleocene/Eocene boundary, the latter event is found to occur near a minimum in the ~400-kyr eccentricity cycle. Thus the CIE occurred during a time of minimal variability in insolation, the dominant mechanism for forcing climate change on 104-year scales. We argue that this is inconsistent with mechanisms that rely on a threshold climate event to trigger the Paleocene/Eocene thermal maximum since any threshold would more likely be crossed during a period of high-amplitude climate variations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prominent middle Eocene warming event is identified in Southern Ocean deep-sea cores, indicating that long-term cooling through the middle and late Eocene was not monotonic. At sites on Maud Rise and the Kerguelen Plateau, a distinct negative shift in d18O values (~1.0 per mil) is observed ca. 41.5 Ma. This excursion is interpreted as primarily a temperature signal, with a transient warming of 4°C over 600 k.y. affecting both surface and middle-bathyal deep waters in the Indian-Atlantic region of the Southern Ocean. This isotopic event is designated as the middle Eocene climatic optimum, and is interpreted to represent a significant climatic reversal in the midst of middle to late Eocene deep-sea cooling. The lack of a significant negative carbon isotope excursion, as observed during the Paleocene-Eocene thermal maximum, and the gradual rate of high-latitude warming suggest that this event was not triggered by methane hydrate dissociation. Rather, a transient rise in pCO2 levels is suspected, possibly as a result of metamorphic decarbonation in the Himalayan orogen or increased ridge/arc volcanism during the late middle Eocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drilling at ODP Site 641 (on the western margin of Galicia Bank, off northwestern Spain) revealed a thin, but pronounced, interval of black shale and gray-green claystone. Our high-resolution study combines the sedimentology, micropaleontology (palynomorphs and others), organic and inorganic geochemistry, and isotopic values of this layer to demonstrate the distinct nature of the sediment and prove that the sequence represents the local sedimentary expression of the global Cenomanian/Turonian Oceanic Anoxic Event (OAE) of Schlanger and Jenkyns (1976), Arthur and Schlanger (1979), and Jenkyns (1980), also called the Cenomanian/Turonian Boundary Event (CTBE). The most striking evidence is that the strong positive d13C excursion characterizing the CTBE sequences in shallow areas can be traced into a pronounced deep-sea expression, thus providing a good stratigraphic marker for the CTBE in various paleosettings. The isotopic excursion at Site 641 coincides with an extremely enriched trace metal content, with values that were previously unknown for the Cretaceous Atlantic. Similar to other CTBE occurrences, the organic carbon content is high (up to 11%) and the organic matter is of dominantly marine origin (kerogen type II). The bulk mineralogy of the CTBE sediments does not differ significantly from the general trend of Cretaceous North Atlantic sediments (dominance of smectite and zeolite with minor amounts of illite and scattered palygorskite, kaolinite, and chlorite); thus, no evidence for either increased volcanic activity nor a drastic climatic change in the borderlands was found. Results from Site 641 are compared with the CTBE section found at Site 398, DSDP Leg 47B (Vigo Seamount at the southern end of the Galicia Bank).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early Aptian Oceanic Anoxic Event (OAE1a, 120 Ma) represents a geologically brief time interval in the mid-Cretaceous greenhouse world that is characterized by increased organic carbon accumulation in marine sediments, sudden biotic changes, and abrupt carbon-isotope excursions indicative of significant perturbations to global carbon cycling. The brevity of these drastic environmental changes (< 10**6 year) and the typically 10**6 year temporal resolution of the available chronologies, however, represent a critical gap in our knowledge of OAE1a. We have conducted a high-resolution investigation of three widely distributed sections, including the Cismon APTICORE in Italy, Santa Rosa Canyon in northeastern Mexico, and Deep Sea Drilling Project (DSDP) Site 398 off the Iberian margin in the North Atlantic Ocean, which represent a range of depositional environments where condensed and moderately expanded OAE1a intervals are recorded. The objectives of this study are to establish orbital chronologies for these sections and to construct a common, high-resolution timescale for OAE1a. Spectral analyses of the closely-spaced (corresponding to ~5 to 10 kyr) measurements of calcium carbonate content of the APTICORE, magnetic susceptibility (MS) and anhysteretic remanent magnetization (ARM) of the Santa Rosa samples, and MS, ARM and ARM/IRM, where IRM is isothermal remanent magnetization, of Site 398 samples reveal statistically significant cycles. These cycles exhibit periodicity ratios and modulation patterns similar to those of the mid-Cretaceous orbital cycles, suggesting that orbital variations may have modulated depositional processes. Orbital control allows us to estimate the duration of unique, globally identifiable stages of OAE1a. Although OAE1a had a duration of ~1.0 to 1.3 Myr, the initial perturbation represented by the negative carbon-isotope excursion was rapid, lasting for ~27-44 kyr. This estimate could serve as a basis for constraining triggering mechanisms for OAE1a.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mid-Miocene pelagic sedimentary sections can be correlated using intermediate and high resolution oxygen and carbon isotopic records of benthic foraminifera. Precision of a few tens of thousands of years is readily achievable at sites with high sedimentation rates, for example, Deep Sea Drilling Project sites 289 and 574. The mid-Miocene carbon isotope records are characterized by an interval of high d13C values between 17 and 13.5 Ma (the Monterey Excursion of Vincent and Berger 1985) upon which are superimposed a series of periodic or quasi-periodic fluctuations in d13C values. These fluctuations have a period of approximately 440 kyr, suggestive of the 413 kyr cycle predicted by Milankovitch theory. Vincent and Berger proposed that the Monterey Excursion was the result of increased organic carbon burial in continental margins sediments. The increased d13C values (called 13C maxima) superimposed on the generally high mid-Miocene signal coincide with increases in d18O values suggesting that periods of cooling and/or ice buildup were associated with exceptionally rapid burial of organic carbon and lowered atmospheric CO2 levels. It is likely that during the Monterey Excursion the ocean/atmosphere system became progressively more sensitive to small changes in insolation, ultimately leading to major cooling of deep water and expansion of continental ice. We have assigned an absolute chronology, based on biostratigraphic and magneto-biostratigraphic datum levels, to the isotope stratigraphy and have used that chronology to correlate unconformities, seismic reflectors, carbonate minima, and dissolution intervals. Intervals of sediment containing 13C maxima are usually better preserved than the overlying and underlying sediments, indicating that the d13C values of TCO2 in deep water and the corrosiveness of seawater are inversely correlated. This again suggests that the 13C maxima were associated with rapid burial of organic carbon and reduced levels of atmospheric CO2. The absolute chronology we have assigned to the isotopic record indicates that the major mid-Miocene deepwater cooling/ice volume expansion took 2 m.y. and was not abrupt as had been reported previously. The cooling appears abrupt at many sites because the interval is characterized by a number of dissolution intervals. The cooling was not monotonic, and the 2 m.y. interval included an episode of especially rapid cooling as well as a brief return to warmer conditions before the final phase of the cooling period. The increase in d18O values of benthic foraminifera between 14.9 and 12.9 Ma was greatest at deeper water sites and at sites closest to Antarctica. The data suggest that the d18O value of seawater increased by no more than about 1.1 per mil during this interval and that the remainder of the change in benthic d18O values resulted from cooling in Antarctic regions of deepwater formation. Equatorial planktonic foraminifera from sites 237 and 289 exhibit a series of 0.4 per mil steplike increases in d13C values. Only one of these increases in planktonic d13C is correlated with any of the features in the mid-Miocene benthic carbon isotope record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late Paleocene thermal maximum (LPTM) was a dramatic, short-term global warming event that occurred ~55 Ma. Warming of high-latitude surface waters and global deep waters during the LPTM has been well documented; however, current data suggest that subtropical and tropical sea surface temperatures (SSTs) did not change during the event. Conventional paradigms of global climate change, such as CO2-induced greenhouse warming, predict greater warming in the high latitudes than in the tropics or subtropics but, nonetheless, cannot account for the stable tropical/subtropical SSTs. We measured the stable isotope values of well-preserved late Paleocene to early Eocene planktonic foraminifera from South Atlantic Deep Sea Drilling Project (DSDP) Site 527 to evaluate the subtropical response to the climatic and environmental changes of the LPTM. Planktonic foraminiferal d18O values at Site 527 decrease by ~0.94 per mil from pre-LPTM to excursion values, providing the first evidence for subtropical warming during the LPTM. We estimate that subtropical South Atlantic SSTs warmed by at least ~1°-4°C, on the basis of possible changes in evaporation and precipitation. The new evidence for subtropical SST warming supports a greenhouse mechanism for global warming involving elevated atmospheric CO2 levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbonate saturation profile of the oceans shoaled markedly during a transient global warming event known as the Paleocene-Eocene thermal maximum (PETM) (circa 55 Ma). The rapid release of large quantities of carbon into the ocean-atmosphere system is believed to have triggered this intense episode of dissolution along with a negative carbon isotope excursion (CIE). The brevity (120-220 kyr) of the PETM reflects the rapid enhancement of negative feedback mechanisms within Earth's exogenic carbon cycle that served the dual function of buffering ocean pH and reducing atmospheric greenhouse gas levels. Detailed study of the PETM stratigraphy from Ocean Drilling Program Site 690 (Weddell Sea) reveals that the CIE recovery period, which postdates the CIE onset by ~80 kyr, is represented by an expanded (~2.5 m thick) interval containing a unique planktic foraminiferal assemblage strongly diluted by coccolithophore carbonate. Collectively, the micropaleontological and sedimentological changes preserved within the CIE recovery interval reflect a transient state when ocean-atmosphere chemistry fostered prolific coccolithophore blooms that suppressed the local lysocline to relatively deeper depths. A prominent peak in the abundance of the clay mineral kaolinite is associated with the CIE recovery interval, indicating that continental weathering/runoff intensified at this time as well (Robert and Kennett, 1994). Such parallel stratigraphic changes are generally consonant with the hypothesis that enhanced continental weathering/runoff and carbonate precipitation helped sequester carbon during the PETM recovery period (e.g., Dickens et al., 1997, doi:10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2 ; Zachos et al., 2005, doi:10.1126/science.1109004).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basal carbonate sediments recovered at Ocean Drilling Program (ODP) Site 1149 lie directly on magnetic Anomaly M12. They contain abundant and moderately well preserved calcareous nannofossils. Two nannofossil zones are recognized: the lower Calcicalathina oblongata Zone and the upper Lithraphidites bollii Zone, indicating a late Valanginian-late Hauterivian age. The close occurrence of two significant bioevents, the first occurrence (FO) of L. bollii and the FO of Rucinolithus terebrodentarius in Core 185-1149B-20R, together with dip data recorded during in situ geophysical logging, suggest the presence of an unconformity that corresponds to the lower Hauterivian sedimentary section. The continuous occurrence of L. bollii is reported for the first time in sediments from the Pacific Ocean. Other marker species regarded as cosmopolitan (e.g., C. oblongata) have a sporadic occurrence. Nannoconids, very useful zonal markers for Tethyan areas, are virtually absent. The presence of an unusually high abundance of Diazomatolithus lehmanii is also recorded and correlates with the Valanginian 13C positive excursion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oceanic anoxic event 2 (OAE-2) occurring during the Cenomanian/Turonian (C/T) transition is evident from a globally recognized positive stable carbon isotopic excursion and is thought to represent one of the most extreme carbon cycle perturbations of the last 100 Myr. However, the impact of this major perturbation on and interaction with global climate remains unclear. Here we report new high-resolution records of sea surface temperature (SST) based on TEX86 and d 18O of excellently preserved planktic foraminifera and stable organic carbon isotopes across the C/T transition from black shales located offshore Suriname/French Guiana (Demerara Rise, Ocean Drilling Program Leg 207 Site 1260) and offshore Senegal (Cape Verde Basin, Deep Sea Drilling Project Leg 41 Site 367). At Site 1260, where both SST proxy records can be determined, a good match between conservative SST estimates from TEX86 and d 18O is observed. We find that late Cenomanian SSTs in the equatorial Atlantic Ocean (33°C) were substantially warmer than today (27°-29°C) and that the onset of OAE-2 coincided with a rapid shift to an even warmer (35°-36°C) regime. Within the early stages of the OAE a marked (4°C) cooling to temperatures lower than pre-OAE conditions is observed. However, well before the termination of OAE-2 the warm regime was reestablished and persisted into the Turonian. Our findings corroborate the view that the C/T transition represents the onset of the interval of peak Cretaceous warmth. More importantly, they are consistent with the hypotheses that mid-Cretaceous warmth can be attributed to high levels of atmospheric carbon dioxide (CO2) and that major OAEs were capable of triggering global cooling through the negative feedback effect of organic carbon-burial-led CO2 sequestration. Evidently, however, the factors that gave rise to the observed shift to a warmer climate regime at the onset of OAE-2 were sufficiently powerful that they were only briefly counterbalanced by the high rates of carbon burial attained during even the most extreme interval of organic carbon burial in the last 100 Myr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eocene Thermal Maximum 2 (ETM2) occurred ~1.8 Myr after the Paleocene Eocene Thermal Maximum (PETM) and, like the PETM, was characterized by a negative carbon isotope excursion coupled with warming. We combined benthic foraminiferal and sedimentological records for Southeast Atlantic Sites 1263 (1500 m paleodepth) and 1262 (3600 m paleodepth) to show that benthic foraminiferal diversity and accumulation rates declined more precipitously and severely at the shallower site during peak ETM2. The sites are in close proximity, so differences in surface productivity cannot have caused this differential effect. Instead, on the basis of an analysis of climate modelling experiments, we infer that changes in ocean circulation pattern across ETM2 may have resulted in more pronounced warming at intermediate depths (Site 1263). The effects of more pronounced warming include increased metabolic rates, leading to a decrease in effective food supply and increased deoxygenation, thus potentially explaining the more severe benthic impacts at Site 1263. In response to more severe benthic disturbance, bioturbation may have decreased at Site 1263 as compared to Site 1262, hence differentially affecting the bulk carbonate record. We use a sediment-enabled Earth system model to test whether a reduction in bioturbation and/or the likely reduced carbonate saturation of more poorly ventilated waters can explain the more extreme excursion in bulk d13C and sharper transition in wt% CaCO3 at Site 1263. We find that both enhanced acidification and reduced bioturbation during peak ELMO conditions are needed to account for the observed features. Our combined ecological and modelling analysis illustrates the potential role of ocean circulation changes in amplifying local environmental changes and driving temporary, but drastic, loss of benthic biodiversity and abundance.