143 resultados para Evolved gases


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large number of samples of nonlithified and lithified sediments from Leg 93 sites were analyzed for their contents of organic carbon and calcium carbonate. An average of two samples was selected from every core for carbonate determination; organic carbon was measured in most of these samples. Nearly all of these analyses were performed on board Glomar Challenger for samples from Sites 603 and 604. Site 605 samples, plus some of the deeper samples from Hole 603B, were analyzed at the University of Michigan. The procedures used in both cases were virtually the same, and their results compared well. Organic carbon analyses were done using a Hewlett- Packard 185-B CHN Analyzer. Portions of samples selected for calcium carbonate determinations were treated with dilute HC1 to remove carbonate, washed with deionized water, and dried at 110°C. A Cahn Electrobalance was used to weight 20-mg samples of sediment for CHN analysis. Samples were combusted at 1050°C in the presence of an oxidant, and the volumes of the evolved gases determined as measures of the C, H, and N contents of sediment organic matter. Areas of gas peaks were determined and compared to those of rock standards of known carbon and nitrogen contents. These values were used to standardize instrument response so that C/N atomic ratios could be reported. Organic carbon concentrations were calculated on the basis of sediment dry weight. Hydrogen elemental analysis with the procedure used is untrustworthy because of the variable amounts of clay minerals and their hydrates, hence hydrogen values are not reported for samples analyzed by this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basalts from different structural provinces in the ocean basins, such as mid-ocean ridges, island arcs, and oceanic plateaus, show marked differences in major and minor element composition stemming from differences in magma source. In addition, there are variations even within individual provinces, based on such processes as crystal fractionation, secondary alteration, and hydrothermal alteration. It is also known that hydrothermal processes can cause changes in the gas composition of submarine basalts. For example, Zolotarev et al. (1978) have established that hydrothermal alteration frequently causes an increase in the CO2 content of basalts. If the homogeneity in composition and concentration of organic gases in oceanic basalts is associated with degassing during epimagmatic alteration, it would be interesting to investigate the relative abundance of gas phases in young basalts from midoceanic ridges. This chapter deals with the distribution of organic gases and CO2 in young basalts recovered on Leg 65 from the Gulf of California. Our aim was to establish the relationship between gas composition and degree of alteration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrocarbon gases (methane, ethane, propane, isobutane, n-butane, ethene, and propene) are present in Tertiary and Quaternary shelf, upper-slope, and lower-slope deposits of the Peruvian continental margin. Methane dominates the composition of the hydrocarbon gas at all 10 sites examined during Ocean Drilling Program (ODP) Leg 112. Generation of methane is regulated by the amount of sulfate in pore water. Wherever sulfate concentrations approach or equal zero, methane concentrations increase rapidly, reaching values near 100,000 µL/L of wet sediment at eight of the 10 sites. Methane at all 10 sites results from methanogenesis, which is inhibited where sulfate is present and microbial reduction of sulfate occurs. Hydrocarbon gases heavier than methane also are present, but at much lower concentrations than methane. These hydrocarbons are thought to result from early thermal and microbial diagenesis, based on relative gas compositions and trends of concentrations with depth. With few exceptions, the results obtained in the shipboard and shore-based laboratories are comparable for methane and ethane in sediments of Leg 112. Reanalyses of canned sediments from ODP Leg 104 and from Deep Sea Drilling Project (DSDP) Legs 76 and 84 show that gas samples can be stored for as long as 8 yr, but the amounts of individual hydrocarbon gases retained vary. Nevertheless, the trends of the data sets with depth are similar for fresh and stored samples.