83 resultados para Ethnology--Kenya
Resumo:
During the Netherlands Indian Ocean Project (NIOP, 1992-1993) sediment community oxygen consumption (SCOC) was measured on two continental margins in the Indian Ocean with different productivity: the productive upwelling region off Yemen-Somalia and the supposedly less productive Kenyan margin, which lacks upwelling. The two margins also differ in terms of river input (Kenya) and the more severe oxygen minimum in the Arabian Sea. Simultaneously with SCOC, distributions of benthic biomass and phytodetritus were studied. Our expectation was that benthic processes in the upwelling margin of the Arabian Sea would be relatively enhanced as a result of the higher productivity. On the Kenyan margin, SCOC (range 1-36 mmol/m**2/d) showed a clear decrease with increasing water depth, and little temporal variation was detected between June and December. Highest SCOC values of this study were recorded at 50 m depth off Kenya, with a maximum of 36 mmol/m**2/d in the northernmost part. On the margin off Yemen-Somalia, SCOC was on average lower and showed little downslope variation, 1.8-5.7 mmol/m**2/d, notably during upwelling, when the zone between 70 and 1700 m was covered with low O2 water (10-50 µM). After cessation of upwelling, SCOC at 60 m depth off Yemen increased from 5.7 to 17.6 mmol/m**2/d concurrently with an increase of the near-bottom O2 concentration (from 11 to 153 µM), suggesting a close coupling between SCOC and O2 concentration. This was demonstrated in shipboard cores in which the O2 concentration in the overlying water was raised after the cores were first incubated under in situ conditions (17 µM O2). This induced an immediate and pronounced increase of SCOC. Conversely, at deeper stations permanently within the oxygen minimum zone (OMZ), SCOC showed little variation between monsoon periods. Hence, organic carbon degradation in sediments on a large part of the Yemen slope appears hampered by the oxygen deficiency of the overlying water. Macrofauna biomass and the pooled biomass of smaller organisms, estimated by the nucleic acid content of the sediment, had comparable ranges in the two areas in spite of more severe suboxic conditions in the Arabian Sea. At the Kenyan shelf, benthic fauna (macro- and meiofauna) largely followed the spatial pattern of SCOC, i.e. high values on the northern shelf-upper slope and a downslope decrease. On the Yemen-Somali margin the macrofauna distribution was more erratic. Nucleic acids displayed no clear downslope trend on either margin owing to depressed values in the OMZ, perhaps because of adverse effects of low O2 on small organisms (meiofauna and microbes). Phytodetritus distributions were different on the two margins. Whereas pigment levels decreased downslope along the Kenya margin, the upper slope off Yemen (800 m) had a distinct accumulation of mainly refractory carotenoid pigments, suggesting preservation under low 02. Because the accumulations of Corg and pigments on the Yemen slope overlap only partly, we infer a selective deposition and preservation of labile particles on the upper slope, whereas refractory material undergoes further transport downslope.
Resumo:
In February of 1983 a new terrestrial photogrammetric survey of Lewis Glacier (0° 9' S) has been made, from which the present topographic map has been produced in a scale of 1:5000. Simultaneously a survey of 1963 was evaluated giving a basis for computations of area and volume changes over the 20 year period: Lewis Glacier has lost 22 % of its area and 50 % of its volume. Based on maps and field observations of moraines 10 different stages were identified. Changes of area and volume can be determined for the periods after 1890, two older, undated stages are presumed to be of Little Ice Age-origin. Moderate losses from 1890 to 1920 were followed by strong, uninterrupted retreat up to present. In this respect Lewis Glacier behaves as all other equatorial glaciers that were closer examined. Compared to alpine glaciers the development was similar up to 1950. In the following years, however, the glaciers of the Alps gained mass and advanced while Lewis Glacier experienced its strongest losses from 1974 to 1983.
Resumo:
Temperature-dependent population growth of diamondback moth (DBM) Plutella xylostella (L.), a prolific insect pest of crucifer vegetables, was studied under six constant temperatures in the laboratory. The objective of the study was to predict the impacts of temperature changes on the population of DBM at high-resolution scales along altitudinal gradients and under climate change scenarios. Non-linear functions were fitted on the data for modeling the development, mortality, longevity and oviposition of the pest. The best-fitted functions for each life stage were compiled for estimating the life table parameters of the species by stochastic simulations. To quantify the impacts on the pest, three indices (establishment, generation and activity) were computed using the estimates of life table parameters and temperature data obtained at local scale (current scenario 2013) and downscaled climate change data (future scenario 2055) from the AFRICLIM database. To measure and represent the impacts of temperature change along the altitude on the pest; the indices were mapped along the altitudinal gradients of Kilimanjaro and Taita Hills, in Tanzania and Kenya, respectively. Potential impact of the changes between climate scenarios 2013 and 2055 was assessed. The data files included in this database were utilized for the above analysis to develop temperature dependent phenology of Plutella xylostella to assess current and future distribution along eastern African Afromontanes.