27 resultados para EUN
Resumo:
A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.
Resumo:
Gabbroic xenoliths and diverse megacrysts (e.g., clinopyroxenes, amphiboles and plagioclases), which correspond to the lithology ranging from gabbro-norite to gabbro, occur in the Pleisto-Holocene alkali basalts from Jeju Island, South Korea. The gabbroic xenoliths consist primarily of moderate-K2O plagioclase, Ti-Al-rich clinopyroxene and CaO-rich orthopyroxene; additionally, TiO2-rich amphibole (kaersutite) and Ti-Fe oxides might or might not be present. The plagioclase is the most dominant phase (approx. 60-70 vol.%). The xenoliths and megacrysts provide evidence for the modal metasomatism of the lower continental crust by the mafic magmas during the Pleistocene. The coarse grain size (up to 5 mm), moderate Mg# [=100xMg/(Mg+Fe(total)) atomic ratio] of pyroxenes (70-77) and textural features (e.g., poikilitic) indicate that the gabbroic xenoliths are consistent with a cumulus origin. The clinopyroxenes from these xenoliths are enriched in REE with smooth convex-upward MREE patterns, which are expected for cumulus minerals formed from a melt enriched in incompatible trace elements. The strikingly similar major and trace element variations and the patterns of constituent minerals clearly indicate a genetic link between the gabbroic xenoliths (plus megacrysts) and the host basalt, indicating that the xenoliths belong to the Jeju Pleisto-Holocene magma system. On the basis of the textural features, the mineral equilibria and the major and trace element variations, the xenoliths appear to have crystallized from basaltic melts at the reservoir-roof environment within the lower crust (4-7 kbars) above the present Moho estimates beneath Jeju Island, where the xenoliths represent wall rocks. Following the consolidation of the xenolith lithologies, volatile- and incompatible element-enriched melt/fluid, as metasomatic agents, infiltrated through the grain boundaries and/or cracks and reacted with the preexisting anhydrous phases, which produced the metasomatic amphiboles. This volatile-enriched melt/fluid could have evolved from the initially anhydrous compositions to the volatile-saturated compositions by the active fractional crystallization in the Jeju Pleisto-Holocene magma system. This process was significant in that it was a relatively young event and played an important role in the formation of the hydrous minerals and the metasomatization of the lower continental crust, which is a plume-impacted area along the Asian continental margin. The major and trace element analyses of the mineral phases from the xenoliths were performed to define the principal geochemical characteristics of the crustal lithosphere segment represented by the studied xenoliths.
Resumo:
We characterize the textural and geochemical features of ocean crustal zircon recovered from plagiogranite, evolved gabbro, and metamorphosed ultramafic host-rocks collected along present-day slow and ultraslow spreading mid-ocean ridges (MORs). The geochemistry of 267 zircon grains was measured by sensitive high-resolution ion microprobe-reverse geometry at the USGS-Stanford Ion Microprobe facility. Three types of zircon are recognized based on texture and geochemistry. Most ocean crustal zircons resemble young magmatic zircon from other crustal settings, occurring as pristine, colorless euhedral (Type 1) or subhedral to anhedral (Type 2) grains. In these grains, Hf and most trace elements vary systematically with Ti, typically becoming enriched with falling Ti-in-zircon temperature. Ti-in-zircon temperatures range from 1,040 to 660°C (corrected for a TiO2 ~ 0.7, a SiO2 ~ 1.0, pressure ~ 2 kbar); intra-sample variation is typically ~60-15°C. Decreasing Ti correlates with enrichment in Hf to ~2 wt%, while additional Hf-enrichment occurs at relatively constant temperature. Trends between Ti and U, Y, REE, and Eu/Eu* exhibit a similar inflection, which may denote the onset of eutectic crystallization; the inflection is well-defined by zircons from plagiogranite and implies solidus temperatures of ~680-740°C. A third type of zircon is defined as being porous and colored with chaotic CL zoning, and occurs in ~25% of rock samples studied. These features, along with high measured La, Cl, S, Ca, and Fe, and low (Sm/La)N ratios are suggestive of interaction with aqueous fluids. Non-porous, luminescent CL overgrowth rims on porous grains record uniform temperatures averaging 615 ± 26°C (2SD, n = 7), implying zircon formation below the wet-granite solidus and under water-saturated conditions. Zircon geochemistry reflects, in part, source region; elevated HREE coupled with low U concentrations allow effective discrimination of ~80% of zircon formed at modern MORs from zircon in continental crust. The geochemistry and textural observations reported here serve as an important database for comparison with detrital, xenocrystic, and metamorphosed mafic rock-hosted zircon populations to evaluate provenance.
Resumo:
A mesocosm experiment was conducted to evaluate the effects of future climate conditions on photosynthesis and productivity of coastal phytoplankton. Natural phytoplankton assemblages were incubated in field mesocosms under the ambient condition (present condition: ca. 400 ppmv CO2 and ambient temp.), and two future climate conditions (acidification condition: ca. 900 ppmv CO2 and ambient temp.; greenhouse condition: ca. 900 ppmv CO2 and 3 °C warmer than ambient). Photosynthetic parameters of steady-state light responses curves (LCs; measured by PAM fluorometer) and photosynthesis-irradiance curves (P-I curves; estimated by in situ incorporation of 14C) were compared to three conditions during the experiment period. Under acidification, electron transport efficiency (alpha LC) and photosynthetic 14C assimilation efficiency (alpha) were 10% higher than those of the present condition, but maximum rates of relative electron transport (rETRm,LC) and photosynthetic 14C assimilation (PBmax) were lower than the present condition by about 19% and 7%, respectively. In addition, rETRm,LC and alpha LC were not significantly different between and greenhouse conditions, but PBmax and alpha of greenhouse conditions were higher than those of the present condition by about 9% and 30%, respectively. In particular, the greenhouse condition has drastically higher PBmax and alpha than the present condition more than 60% during the post-bloom period. According to these results, two future ocean conditions have major positive effects on the photosynthesis in terms of energy utilization efficiency for organic carbon fixation through the inorganic carbon assimilation. Despite phytoplankton taking an advantage on photosynthesis, primary production of phytoplankton was not stimulated by future conditions. In particular, biomass of phytoplankton was depressed under both acidification and greenhouse conditions after the the pre-bloom period, and more research is required to suggest that some factors such as grazing activity could be important for regulating phytoplankton bloom in the future ocean.
Resumo:
Sodium hypochlorite (NaOCl) is widely used to disinfect seawater in power plant cooling systems in order to reduce biofouling, and in ballast water treatment systems to prevent transport of exotic marine species. While the toxicity of NaOCl is expected to increase by ongoing ocean acidification, and many experimental studies have shown how algal calcification, photosynthesis and growth respond to ocean acidification, no studies have investigated the relationship between NaOCl toxicity and increased CO2. Therefore, we investigated whether the impacts of NaOCl on survival, chlorophyll a (Chl-a), and effective quantum yield in three marine phytoplankton belonging to different taxonomic classes are increased under high CO2 levels. Our results show that all biological parameters of the three species decreased under increasing NaOCl concentration, but increasing CO2 concentration alone (from 450 to 715 µatm) had no effect on any of these parameters in the organisms. However, due to the synergistic effects between NaOCl and CO2, the survival and Chl-a content in two of the species, Thalassiosira eccentrica and Heterosigma akashiwo, were significantly reduced under high CO2 when NaOCl was also elevated. The results show that combined exposure to high CO2 and NaOCl results in increasing toxicity of NaOCl in some marine phytoplankton. Consequently, greater caution with use of NaOCl will be required, as its use is widespread in coastal waters.