20 resultados para Digital Surface Models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substantial retreat or disintegration of numerous ice shelves have been observed on the Antarctic Peninsula. The ice shelf in the Prince Gustav Channel retreated gradually since the late 1980's and broke-up in 1995. Tributary glaciers reacted with speed-up, surface lowering and increased ice discharge, consequently contributing to sea level rise. We present a detailed long-term study (1993-2014) on the dynamic response of Sjögren Inlet glaciers to the disintegration of Prince Gustav Ice Shelf. We analyzed various remote sensing datasets to observe the reactions of the glaciers to the loss of the buttressing ice shelf. A strong increase in ice surface velocities was observed with maximum flow speeds reaching 2.82±0.48 m/d in 2007 and 1.50±0.32 m/d in 2004 at Sjögren and Boydell glaciers respectively. Subsequently, the flow velocities decelerated, however in late 2014, we still measured about two times the values of our first measurements in 1996. The tributary glaciers retreated 61.7±3.1 km² behind the former grounding line of the ice shelf. In regions below 1000 m a.s.l., a mean surface lowering of -68±10 m (-3.1 m/a) was observed in the period 1993-2014. The lowering rate decreased to -2.2 m/a in recent years. Based on the surface lowering rates, geodetic mass balances of the glaciers were derived for different time steps. High mass loss rate of -1.21±0.36 Gt/a was found in the earliest period (1993-2001). Due to the dynamic adjustments of the glaciers to the new boundary conditions the ice mass loss reduced to -0.59±0.11 Gt/a in the period 2012-2014, resulting in an average mass loss rate of -0.89±0.16 Gt/a (1993-2014). Including the retreat of the ice front and grounding line, a total mass change of -38.5±7.7 Gt and a contribution to sea level rise of 0.061±0.013 mm were computed. Analysis of the ice flux revealed that available bedrock elevation estimates at Sjögren Inlet are too shallow and are the major uncertainty in ice flux computations. This temporally dense time series analysis of Sjögren Inlet glaciers shows that the adjustments of tributary glaciers to ice shelf disintegration are still going on and provides detailed information of the changes in glacier dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern Antarctic Peninsula is one of the fastest changing regions on Earth. The disintegration of the Larsen-A Ice Shelf in 1995 caused tributary glaciers to adjust by speeding up, surface lowering, and overall increased ice-mass discharge. In this study, we investigate the temporal variation of these changes at the Dinsmoor-Bombardier-Edgeworth glacier system by analyzing dense time series from various spaceborne and airborne Earth observation missions. Precollapse ice shelf conditions and subsequent adjustments through 2014 were covered. Our results show a response of the glacier system some months after the breakup, reaching maximum surface velocities at the glacier front of up to 8.8 m/d in 1999 and a subsequent decrease to ~1.5 m/d in 2014. Using a dense time series of interferometrically derived TanDEM-X digital elevation models and photogrammetric data, an exponential function was fitted for the decrease in surface elevation. Elevation changes in areas below 1000 m a.s.l. amounted to at least 130±15 m130±15 m between 1995 and 2014, with change rates of ~3.15 m/a between 2003 and 2008. Current change rates (2010-2014) are in the range of 1.7 m/a. Mass imbalances were computed with different scenarios of boundary conditions. The most plausible results amount to -40.7±3.9 Gt-40.7±3.9 Gt. The contribution to sea level rise was estimated to be 18.8±1.8 Gt18.8±1.8 Gt, corresponding to a 0.052±0.005 mm0.052±0.005 mm sea level equivalent, for the period 1995-2014. Our analysis and scenario considerations revealed that major uncertainties still exist due to insufficiently accurate ice-thickness information. The second largest uncertainty in the computations was the glacier surface mass balance, which is still poorly known. Our time series analysis facilitates an improved comparison with GRACE data and as input to modeling of glacio-isostatic uplift in this region. The study contributed to a better understanding of how glacier systems adjust to ice shelf disintegration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With full-waveform (FWF) lidar systems becoming increasingly available from different commercial manufacturers, the possibility for extracting physical parameters of the scanned surfaces in an area-wide sense, as addendum to their geometric representation, has risen as well. The mentioned FWF systems digitize the temporal profiles of the transmitted laser pulse and of its backscattered echoes, allowing for a reliable determination of the target distance to the instrument and of physical target quantities by means of radiometric calibration, one of such quantities being the diffuse Lambertian reflectance. The delineation of glaciers is a time-consuming task, commonly performed manually by experts and involving field trips as well as image interpretation of orthophotos, digital terrain models and shaded reliefs. In this study, the diffuse Lambertian reflectance was compared to the glacier outlines mapped by experts. We start the presentation with the workflow for analysis of FWF data, their direct georeferencing and the calculation of the diffuse Lambertian reflectance by radiometric calibration; this workflow is illustrated for a large FWF lidar campaign in the Ötztal Alps (Tyrol, Austria), operated with an Optech ALTM 3100 system. The geometric performance of the presented procedure was evaluated by means of a relative and an absolute accuracy assessment using strip differences and orthophotos, resp. The diffuse Lambertian reflectance was evaluated at two rock glaciers within the mentioned lidar campaign. This feature showed good performance for the delineation of the rock glacier boundaries, especially at their lower parts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This theses investigates changes at Gepatschferner in length, area and volume since the last glacier maximum in 1850. Changes are discussed for the following time periods: 1850-1922, 1922-1971, 1971-1997, 1997-2006. Digital elevation models were created for 1850 from geomorphological data and for 1922 and 1971 from historical maps. Existing DEMs for 1997 and 2006 were further analysed. Since 1850 Gepatschferner has retreated by 2 km in length and has lost 32% of its area and 36% of its volume. The rate of loss of volume is increasing faster than the rate of loss of area and losses in the upper regions of the glacier are becoming increasingly more important to overall losses. The largest losses per 50 m elevation increment occur at the tongue. These losses are greatest in the most recent time step studied, 1997-2006, and exceed previous values by 40% and more. The data base includes the glacier margins, elevations models as they have been compiled within the thesis (DEMs of 1997 and 2006 are part of the glacier inventories, length changes are part of the length change data base of the Austrian Alpine Club).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world's largest fossil oyster reef, formed by the giant oyster Crassostrea gryphoides and located in Stetten (north of Vienna, Austria) is studied by Harzhauser et al., 2015, 2016; Djuricic et al., 2016. Digital documentation of the unique geological site is provided by terrestrial laser scanning (TLS) at the millimeter scale. Obtaining meaningful results is not merely a matter of data acquisition with a suitable device; it requires proper planning, data management, and postprocessing. Terrestrial laser scanning technology has a high potential for providing precise 3D mapping that serves as the basis for automatic object detection in different scenarios; however, it faces challenges in the presence of large amounts of data and the irregular geometry of an oyster reef. We provide a detailed description of the techniques and strategy used for data collection and processing in Djuricic et al., 2016. The use of laser scanning provided the ability to measure surface points of 46,840 (estimated) shells. They are up to 60-cm-long oyster specimens, and their surfaces are modeled with a high accuracy of 1 mm. In addition to laser scanning measurements, more than 300 photographs were captured, and an orthophoto mosaic was generated with a ground sampling distance (GSD) of 0.5 mm. This high-resolution 3D information and the photographic texture serve as the basis for ongoing and future geological and paleontological analyses. Moreover, they provide unprecedented documentation for conservation issues at a unique natural heritage site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Changes of glaciers and snow cover in polar regions affect a wide range of physical and ecosystem processes on land and in the adjacent marine environment. In this study, we investigate the potential of 11-day repeat high-resolution satellite image time series from the TerraSAR-X mission to derive glaciological and hydrological parameters on King George Island, Antarctica during the period Oct/25/2010 to Apr/19/2011. The spatial pattern and temporal evolution of snow cover extent on ice-free areas can be monitored using multi-temporal coherence images. SAR coherence is used to map glacier extent of land terminating glaciers with an average accuracy of 25 m. Multi-temporal SAR color composites identify the position of the late summer snow line at about 220 m above sea level. Glacier surface velocities are obtained from intensity feature-tracking. Surface velocities near the calving front of Fourcade Glacier were up to 1.8 ± 0.01 m/d. Using an intercept theorem based on fundamental geometric principles together with differential GPS field measurements, the ice discharge of Fourcade Glacier was estimated to 20700 ± 5500 m**3/d (corresponding to ~19 ± 5 kt/d). The rapidly changing surface conditions on King George Island and the lack of high-resolution digital elevation models for the region remain restrictions for the applicability of SAR data and the precision of derived products.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As part of the CryoSat Cal/Val activities and the pre-site survey for an ice core drilling contributing to the International Partnerships in Ice Core Sciences (IPICS), ground based kinematic GPS measurements were conducted in early 2007 in the vicinity of the German overwintering station Neumayer (8.25° W and 70.65° S). The investigated area comprises the regions of the ice tongues Halvfarryggen and Søråsen, which rise from the Ekströmisen to a maximum of about 760 m surface elevation, and have an areal extent of about 100 km x 50 km each. Available digital elevation models (DEMs) from radar altimetry and the Antarctic Digital Database show elevation differences of up to hundreds of meters in this region, which necessitated an accurate survey of the conditions on-site. An improved DEM of the Ekströmisen surroundings is derived by a combination of highly accurate ground based GPS measurements, satellite derived laser altimetry data (ICESat), airborne radar altimetry (ARA), and radio echo sounding (RES). The DEM presented here achieves a vertical accuracy of about 1.3 m and can be used for improved ice dynamic modeling and mass balance studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hallstätter Glacier is the northernmost glacier of Austria. Appendant to the northern Limestone Alps, the glacier is located at 47°28'50'' N, 13°36'50'' E in the Dachstein-region. At the same time with its advance linked to the Little Ice Age (LIA), research on changes in size and mass of Hallstätter glacier was started in 1842 by Friedrich Simony. He observed and documented the glacier retreat related to its last maximum extension in 1856. In addition, Hallstätter Glacier is a subject to scientific research to date. In this thesis methods and results of ongoing mass balance measurements are presented and compared to long term volume changes and meteorological observations. The current mass balance monitoring programm using the direct glaciological method was started 2006. In this context, 2009 the ice thickness was measured with ground penetrating radar. The result are used with digital elevation models reconstucted from historical maps and recent digital elevation models to calculate changes in shape and volume of Hallstätter Glacier. Based on current meteorological measurements near the glacier and longtime homogenized climate data provided by HISTALP, time series of precipitation and temperature beginning at the LIA are produced. These monthly precipitation and monthly mean temperature data are used to compare results of a simple degree day model with the volume change calculated from the difference of the digital elevation models. The two years of direct mass balance measurements are used to calibrate the degree day model. A number of possible future scenarios are produced to indicate prospective changes. Within the 150-year-period between 1856 and 2007 the Hallstätter Glacier lost 1940 meters of its length and 2.23 km**2 in area. 37% of the initial volume of 1856 remained. This retreat came along with a change in climate. The application of a running avarage of 30 years shows an increase in precipitation of 18.5% and a warming of 1.3°C near the glacier between 1866 and 1993. The mass loss was continued in the hydrological years 2006/2007 and 2007/2008 showing mean specific mass balance of -376 mm and -700 mm, respectively. Applying a temperature correction for the different minimum elevations of the glacier, the degree day approach based on the two measured mass balances can reproduce sign and order of magnitude of the volume change of Hallstätter Glacier since 1856. Nevertheless, the relative deviation is significant. Future scenarios show, that 30% of the entire glacier volume remains after subtracting the elevation changes between the digital elevation models of 2002 and 2007 ten times from the surface of 2007. The past and present mass changes of Hallstätter Glacier are showing a retreating glacier as a consequence of rising temperatures. Due to high precepitation, increased with previous warming, the Hallstätter Glacier can and will exist in lower elevation compared to inner alpine glaciers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies on the impact of historical, current and future global change require very high-resolution climate data (less or equal 1km) as a basis for modelled responses, meaning that data from digital climate models generally require substantial rescaling. Another shortcoming of available datasets on past climate is that the effects of sea level rise and fall are not considered. Without such information, the study of glacial refugia or early Holocene plant and animal migration are incomplete if not impossible. Sea level at the last glacial maximum (LGM) was approximately 125m lower, creating substantial additional terrestrial area for which no current baseline data exist. Here, we introduce the development of a novel, gridded climate dataset for LGM that is both very high resolution (1km) and extends to the LGM sea and land mask. We developed two methods to extend current terrestrial precipitation and temperature data to areas between the current and LGM coastlines. The absolute interpolation error is less than 1°C and 0.5 °C for 98.9% and 87.8% of all pixels for the first two 1 arc degree distance zones. We use the change factor method with these newly assembled baseline data to downscale five global circulation models of LGM climate to a resolution of 1km for Europe. As additional variables we calculate 19 'bioclimatic' variables, which are often used in climate change impact studies on biological diversity. The new LGM climate maps are well suited for analysing refugia and migration during Holocene warming following the LGM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glacier inventories provide the basis for further studies on mass balance and volume change, relevant for local hydrological issues as well as for global calculation of sea level rise. In this study, a new Austrian glacier inventory has been compiled, updating data from 1969 (GI 1) and 1998 (GI 2) based on high-resolution lidar digital elevation models (DEMs) and orthophotos dating from 2004 to 2012 (GI 3). To expand the time series of digital glacier inventories in the past, the glacier outlines of the Little Ice Age maximum state (LIA) have been digitalized based on the lidar DEM and orthophotos. The resulting glacier area for GI 3 of 415.11 ± 11.18 km**2 is 44% of the LIA area. The annual relative area losses are 0.3%/yr for the ~119-year period GI LIA to GI 1 with one period with major glacier advances in the 1920s. From GI 1 to GI 2 (29 years, one advance period of variable length in the 1980s) glacier area decreased by 0.6% yr?1 and from GI 2 to GI 3 (10 years, no advance period) by 1.2%/yr. Regional variability of the annual relative area loss is highest in the latest period, ranging from 0.3 to 6.19%/yr. The mean glacier size decreased from 0.69 km**2 (GI 1) to 0.46 km**2 (GI 3), with 47% of the glaciers being smaller than 0.1 km**2 in GI 3 (22%).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wetlands store large amounts of carbon, and depending on their status and type, they release specific amounts of methane gas to the atmosphere. The connection between wetland type and methane emission has been investigated in various studies and utilized in climate change monitoring and modelling. For improved estimation of methane emissions, land surface models require information such as the wetland fraction and its dynamics over large areas. Existing datasets of wetland dynamics present the total amount of wetland (fraction) for each model grid cell, but do not discriminate the different wetland types like permanent lakes, periodically inundated areas or peatlands. Wetland types differently influence methane fluxes and thus their contribution to the total wetland fraction should be quantified. Especially wetlands of permafrost regions are expected to have a strong impact on future climate due to soil thawing. In this study ENIVSAT ASAR Wide Swath data was tested for operational monitoring of the distribution of areas with a long-term SW near 1 (hSW) in northern Russia (SW = degree of saturation with water, 1 = saturated), which is a specific characteristic of peatlands. For the whole northern Russia, areas with hSW were delineated and discriminated from dynamic and open water bodies for the years 2007 and 2008. The area identified with this method amounts to approximately 300,000 km**2 in northern Siberia in 2007. It overlaps with zones of high carbon storage. Comparison with a range of related datasets (static and dynamic) showed that hSW represents not only peatlands but also temporary wetlands associated with post-forest fire conditions in permafrost regions. Annual long-term monitoring of change in boreal and tundra environments is possible with the presented approach. Sentinel-1, the successor of ENVISAT ASAR, will provide data that may allow continuous monitoring of these wetland dynamics in the future complementing global observations of wetland fraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on data from R.V. Pelagia, R.V. Sonne and R.V. Meteor multibeam sonar surveys, a high resolution bathymetry was generated for the Mozambique Ridge. The mapping area is divided into five sheets, one overview and four sub-sheets. The boundaries are (west/east/south/north): Sheet 1: 28°30' E/37°00' E/36°20' S/24°50' S; Sheet 2: 32°45' E/36°45' E/28°20' S/25°20' S; Sheet 3: 31°30' E/36°45' E/30°20' S/28°10' S; Sheet 4: 30°30' E/36°30' E/33°15' S/30°15' S; Sheet 5: 28°30' E/36°10' E/36°20' S/33°10' S. Each sheet was generated twice: one from swath sonar bathymetry only, the other one is completed with depths from ETOPO2 predicted bathymetry. Basic outcome of the investigation are Digital Terrain Models (DTM), one for each sheet with 0.05 arcmin (~91 meter) grid spacing and one for the entire area (sheet 1) with 0.1 arcmin grid spacing. The DTM's were utilized for contouring and generating maps. The grid formats are NetCDF (Network Common Data Form) and ASCII (ESRI ArcGIS exchange format). The Maps are formatted as jpg-images and as small sized PNG (Portable Network Graphics) preview images. The provided maps have a paper size of DIN A0 (1189 x 841 mm).