535 resultados para Decreto 1038 de 2015
Resumo:
This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.
Resumo:
This data set presents a comprehensive characterisation of the sedimentary structures from important groundwater hosting formations in Germany (Herten aquifer analog) and Brazil (Descalvado aquifer analog). Multiple 2-D outcrop faces are described in terms of hydraulic, thermal and chemical properties and interpolated in 3D using stochastic techniques. For each aquifer analog, multiple 3D realisations of the facies heterogeneity are provided using different stochastic simulations settings. These are unique analogue data sets that can be used by the wider community to implement approaches for characterising aquifer formations.
Resumo:
There is a demand for regularly updated, broad-scale, accurate land cover information in Victoria from multiple stakeholders. This paper documents the methods used to generate an annual dominant land cover (DLC) map for Victoria, Australia from 2009 to 2013. Vegetation phenology parameters derived from an annual time series of the Moderate Resolution Imaging Spectroradiometer Vegetation Indices 16-day 250 m (MOD13Q1) product were used to generate annual DLC maps, using a three-tiered hierarchical classification scheme. Classification accuracy at the broadest (primary) class level was over 91% for all years, while it ranged from 72 to 81% at the secondary class level. The most detailed class level (tertiary) had accuracy levels ranging from 61 to 68%. The approach used was able to accommodate variable climatic conditions, which had substantial impacts on vegetation growth patterns and agricultural production across the state between both regions and years. The production of an annual dataset with complete spatial coverage for Victoria provides a reliable base data set with an accuracy that is fit-for-purpose for many applications.
Resumo:
Dissolved organic matter (DOM) is the main substrate and energy source for heterotrophic bacterioplankton. To understand the interactions between DOM and the bacterial community (BC), it is important to identify the key factors on both sides in detail, chemically distinct moieties in DOM and the various bacterial taxa. Next-generation sequencing facilitates the classification of millions of reads of environmental DNA and RNA amplicons and ultrahigh-resolution mass spectrometry yields up to 10,000 DOM molecular formulae in a marine water sample. Linking this detailed biological and chemical information is a crucial first step toward a mechanistic understanding of the role of microorganisms in the marine carbon cycle. In this study, we interpreted the complex microbiological and molecular information via a novel combination of multivariate statistics. We were able to reveal distinct relationships between the key factors of organic matter cycling along a latitudinal transect across the North Sea. Total BC and DOM composition were mainly driven by mixing of distinct water masses and presumably retain their respective terrigenous imprint on similar timescales on their way through the North Sea. The active microbial community, however, was rather influenced by local events and correlated with specific DOM molecular formulae indicative of compounds that are easily degradable. These trends were most pronounced on the highest resolved level, that is, operationally defined 'species', reflecting the functional diversity of microorganisms at high taxonomic resolution.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements made with a Biospherical Instrument Inc. QCR-2150 surface PAR sensor mounted on a sensor mast at the stern of the ship (ca. 8m above deck) and time synchronized with the CTD recording unit. The sensor consists of a cosine collector and was also utilized to correct the CTD PAR sensor data. The dark was computed as the lowest 0.01% voltage of the signal that was found to be very stable (0.00965V) for all the legs except for the 2nd leg of the polar circle where there was no complete night (the manufacturer dark was 0.0097V). The manufacturer calibration slope from 12/ 2012 was used to transform the data to scientific units.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements made with a WETLabs Eco-FL sensor mounted on the flowthrough system between June 4th, 2011 and March 30th, 2012. Data was recorded approximately every 10s. Two issues affected the data: 1. Periods when the water 0.2µm filtered water were used as blanks and 2. Periods where fluorescence was affected by non-photochemical quenching (NPQ, chlorophyll fluorescence is reduced when cells are exposed to light, e.g. Falkowski and Raven, 1997). Median data and their standard deviation were binned to 5min bins with period of light/dark indicated by an added variable (so that NPQ affected data could be neglected if the user so chooses). Data was first calibrated using HPLC data collected on the Tara (there were 36 data within 30min of each other). Fewer were available when there was no evident NPQ and the resulting scale factor was 0.0106 mg Chl m-3/count. To increase the calibration match-ups we used the AC-S data which provided a robust estimate of Chlorophyll (e.g. Boss et al., 2013). Scale factor computed over a much larger range of values than HPLC was 0.0088 mg Chl m-3/count (compared to 0.0079 mg Chl m-3/count based on manufacturer). In the archived data the fluorometer data is merged with the TSG, raw data is provided as well as manufacturer calibration constants, blank computed from filtered measurements and chlorophyll calibrated using the AC-S. For a full description of the processing of the Eco-FL please see Taillandier, 2015.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous pH measurements made during 2013 expedition with a Satlantic SeaFET instrument that was connected to the flowthrough system. Data calibration was performed according to Bresnahan et al. (2014) (using spectrophotometric pH measurements on discrete samples (Clayton and Byrne 1993). pH_internal values were taken to calibrate the data (rather than pH_external) because of the better calibration coefficient (there was no trend associated with it). The equations of Clayton and Byrne (1993) was used to compute pH from the measured absorbance values at the temperature of measurement. The data was converted to in situ temperature using the "CO2-sys" program which can be downloaded from http://cdiac.ornl.gov/ftp/co2sys/.