199 resultados para DBD lamp
Resumo:
The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene record of continuous glacier variability on Svalbard from glacier-fed Lake Hajeren. This reconstruction is based on an undisturbed lake sediment core that covers the entire Holocene and resolves variability on centennial scales owing to 26 dating points. A toolbox of physical, geochemical (XRF) and magnetic proxies in combination with multivariate statistics has allowed us to fingerprint glacier activity in addition to other processes affecting the sediment record. Evidence from variations in sediment density, validated by changes in Ti concentrations, reveal glaciers remained present in the catchment following deglaciation prior to 11,300 cal BP, culminating in a Holocene maximum between 9.6 and 9.5 ka cal BP. Correspondence with freshwater pulses from Hudson Strait suggests that Early Holocene glacier advances were driven by the melting Laurentide Ice Sheet (LIS). We find that glaciers disappeared from the catchment between 7.4 and 6.7 ka cal BP, following a late Hypsithermal. Glacier reformation around 4250 cal BP marks the onset of the Neoglacial, supporting previous findings. Between 3380 and 3230 cal BP, we find evidence for a previously unreported centennial-scale glacier advance. Both events are concurrent with well-documented episodes of North Atlantic cooling. We argue that this brief forcing created suitable conditions for glaciers to reform in the catchment against a background of gradual orbital cooling. These findings highlight the climate-sensitivity of the small glaciers studied, which rapidly responded to climate shifts. The start of prolonged Neoglacial glacier activity commenced during the Little Ice Age (LIA) around 700 cal BP, in agreement with reported advances from other glaciers on Svalbard. In conclusion, this study proposes a three-stage Holocene climate history of Svalbard, successively driven by LIS meltwater pulses, episodic Atlantic cooling and declining summer insolation.
Resumo:
Monthly delta18O records of 2 coral colonies (Porites cf. lutea and P. cf. nodifera) from different localities (Aqaba and Eilat) from the northern Gulf of Aqaba, Red Sea, were calibrated with recorded sea surface temperatures (SST) between 1988 and 2000. The results show high correlation coefficients between SST and delta18O. Seasonal variations of coral delta18O in both locations could explain 91% of the recorded SST. Different delta18O/SST relations from both colonies and from the same colonies were obtained, indicating that delta18O from coral skeletons were subject to an extension rate effect. Significant delta18O depletions are associated with high extension rates and higher values with low extension rates. The relation between coral skeletal delta18O and extension rate is not linear and can be described by a simple exponential model. An inverse relationship extends over extension rates from 1 to 5 mm/yr, while for more rapidly growing corals and portions of colonies the relation is constant and the extension rate does not appear to have a significant effect. We recommend that delta18O values be obtained from fast-growing corals or from portions in which the isotopic disequilibrium is fairly constant (extension rate >5 mm/yr). The results show that interspecific differences in corals may produce a significant delta18O profile offset between 2 colonies that is independent of environmental and extension-rate effects. We conclude that the rate of skeletal extension and the species of coral involved have an important influence on coral delta18O and must be considered when using delta18O records for paleoclimatic reconstructions.
Resumo:
The sediment record from Rodderberg potentially provides a climate and environmental record spanning at least the last ca 130 ka. Results from a low resolution pilot study reveal characteristic fluctuations that can be related to global climate variability as reflected in marine isotope stages and document the potential of this site for continuous and high-resolution investigations of the Middle to Late Pleistocene. Here we document the tentative lithology drilled, and show how the elemental composition can be interpreted with regard to lake level fluctuations, related redox conditions, but also to grain-size distribution and changes in lacustrine productivity. Finally, based on major lithological changes, a preliminary depth/age model is suggested that allows reassessing published luminescence ages from the same site.
Resumo:
The subarctic North Pacific Ocean holds a large CO2 reservoir that is currently isolated from the atmosphere by a low-salinity layer. It has recently been hypothesized that the reorganization of these high-CO2 waters may have played a crucial role in the degassing of carbon dioxide to the atmosphere during the last deglaciation. This reorganization would leave some imprint on paleo-productivity records. Here we present 230Th-normalized biogenic fluxes from an intermediate depth sediment core in the Northwest Pacific (RC10-196, 54.7°N, 177.1°E, 1007 m) and place them within the context of a synthesis of previously-published biogenic flux data from 49 deep-sea cores north of 20°N, ranging from 420 to 3968 m water depth. The 230Th-normalized opal, carbonate, and organic carbon fluxes from RC10-196 peak approximately 13,000 calendar years BP during the Bølling/Allerød (B/A) period. Our data synthesis suggests that biogenic fluxes were in general lowest during the last glacial period, increased somewhat in the Northwest Pacific during Heinrich Event 1, and reached a maximum across the entire North Pacific during the B/A period. We evaluate several mechanisms as possible drivers of deglacial change in biogenic fluxes in the North Pacific, including changes in preservation, sediment focusing, sea ice extent, iron inputs, stratification, and circulation shifts initiated in the North Atlantic and North Pacific. Our analysis suggests that while micronutrient sources likely contributed to some of the observed changes, the heterogeneity in timing of glaciogenic retreat and sea level make these mechanisms unlikely causes of region-wide contemporaneous peaks in export production. We argue that paleo-observations are most consistent with ventilation increases in both the North Pacific (during H1) and North Atlantic (during B/A) being the primary drivers of increases in biogenic flux during the deglaciation, as respectively they were likely to bring nutrients to the surface via increased vertical mixing and shoaling of the global thermocline.
Resumo:
The attenuation property of a lateral propagating light (LPL) in sea ice was measured using an artificial lamp in the Canadian Arctic during the 2007/2008 winter. A measurement method is proposed and applied whereby a recording instrument is buried in the sea ice and an artificial lamp is moved across the instrument. The apparent attenuation coefficient µ(lamda) for the lateral propagating light is obtained from the measured logarithmic relative variation rate. With the exception of blue and red lights, the attenuation coefficient changed little with wavelength, but changed considerably with depth. The vertical decrease of the attenuation coefficient was found to be correlated with salinity: the greater the salinity, the greater the attenuation coefficient. A clear linear relation of salinity and the lateral attenuation coefficient with R2 = 0.939 exists to address the close correlation of the attenuation of LPL with the scattering from the brine. The observed attenuation coefficient of LPL is much larger than that of the vertical propagation light, which we speculate to be caused by scattering. Part of this scattered component is transmitted out of the sea ice from the upper and lower surfaces.
Resumo:
Stable isotope measurements on the planktonic foraminifer Globigerinoides ruber (white) have been carried out on a number of selected deep-seas sediment cores from the South Lau and Norlh Fiji Basins. The d18O-curves show good correlation with the inter-ocean oraphic correlation composite d18O-record of the standard reference section (Prell et al. 1986), which, in combination with the chronostratigraphic classifications of Herterich & Sarnthein (1984, modified) and Imbrie et al. 1984), allows a detailed dating of the sedimentary sequences. The deepest layers in core no. 119 (southern Lau Basin) could be assigned to Isotope Stage 24. Measurements made on bulk carbonate in two cores show a much higher glacial-interglacial amplitude, allowing the general identification of the conventional oxygen isotope stages. The d13C-values of the benthic foraminifer Cibicidoides wuellerstorfi show progressively lighter values northwards reflecting an increasing contribution of the isotopically lighter CO2 from the remineralisation of organic matter during the general northward movement of the deep water masses. Cyclicities in the sedimentation rates were observed in core nos. 117 and 119 (both southern Lau Basin) where the interglacials exhibit higher levels than the glacials. Calculated new or export paleoproductivity show that the glacials had higher productivity in the euphotic zone. From the oxygen isotope stratigraphy, the five ash layers in core nos. 117 and 119 could be dated as about 530 ka B.P. in Stage 14, 695 ka B.P. in Stage 18, 775 ka B.P. in Stage 21, 790 ka B.P. and 825 ka B.P. in Stage 22. Carbonate dissolution occurred during stages 5, 8 and 10 to 12.
Resumo:
Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface-water d18O records of Neogloboquadrina pachyderma (left coiled); hence the surface-water d18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 yrs). For the Labrador Sea, sediment core logs contain important information about deep-water current velocities and also reflect the variable input of IRD from different sources as inferred from grain-size analysis, benthic d18O, the relation of density and p-wave velocity, and magnetic susceptibility. For the last glacial, faster deep-water currents which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted for a several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deep-water currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly after, while the abrupt atmospheric temperature rise happened after a larger time lag of >=1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial time scales but decoupling at orbital time scales.
Resumo:
The Toba volcanic event, one of the largest eruptions during the Quaternary, is documented in marine sediment cores from the northeastern Arabian Sea. On the crest of the Murray Ridge and along the western Indian continental margin, we detected distinct concentration spikes and ash layers of rhyolithic volcanic shards near the marine isotope stage 5-4 boundary with the chemical composition of the "Youngest Toba Tuff". Time series of the Uk'37-alkenone index, planktic foraminiferal species, magnetic susceptibility, and sediment accumulation rates from this interval show that the Toba event occurred between two warm periods lasting a few millennia. Using Toba as an instantaneous stratigraphic marker for correlation between the marine- and ice-core chronostratigraphies, these two Arabian Sea climatic events correspond to Greenland interstadials 20 and 19, respectively. Our data sets thus depict substantial interstadial/stadial fluctuations in sea-surface temperature and surface-water productivity. We show that variable terrigenous (eolian) sediment supply played a crucial role in transferring and preserving the productivity signal in the sediment record. Within the provided stratigraphic resolution of several decades to centennials, none of these proxies shows a particular impact of the Toba eruption. However, our results are additional support that Toba, despite its exceptional magnitude, had only a minor impact on the evolution of low-latitude monsoonal climate on centennial to millennial time scales.
Resumo:
We obtained sediment physical properties and geochemical data from 47 piston and gravity cores located in the Bay of Bengal, to study the complex history of the Late Pleistocene run-off from the Ganges and Brahmaputra rivers and its imprint on the Bengal Fan. Grain-size parameters were predicted from core logs of density and velocity to infer sediment transport energy and to distinguish different environments along the 3000-km-long transport path from the delta platform to the lower fan. On the shelf, 27 cores indicate rapidly prograding delta foresets today that contain primarily mud, whereas outer shelf sediment has 25% higher silt contents, indicative of stronger and more stable transport regime, which prevent deposition and expose a Late Pleistocene relic surface. Deposition is currently directed towards the shelf canyon 'Swatch of No Ground', where turbidites are released to the only channel-levee system that is active on the fan during the Holocene. Active growth of the channel-levee system occurred throughout sea-level rise and highstand with a distinct growth phase at the end of the Younger Dryas. Coarse-grained material bypasses the upper fan and upper parts of the middle fan, where particle flow is enhanced as a result of flow-restriction in well-defined channels. Sandier material is deposited mainly as sheet-flow deposits on turbidite-dominated plains at the lower fan. The currently most active part of the fan with 10-40 cm thick turbidites is documented for the central channel including inner levees (e.g., site 40). Site 47 from the lower fan far to the east of the active channel-levee system indicates the end of turbidite sedimentation at 300 ka for that location. That time corresponds to the sea-level lowering during late isotopic stage 9 when sediment supply to the fan increased and led to channel avulsion farther upstream, probably indicating a close relation of climate variability and fan activity. Pelagic deep-sea sites 22 and 28 contain a 630-kyear record of climate response to orbital forcing with dominant 21- and 41-kyear cycles for carbonate and magnetic susceptibility, respectively, pointing to teleconnections of low-latitude monsoonal forcing on the precession band to high-latitude obliquity forcing. Upper slope sites 115, 124, and 126 contain a record of the response to high-frequency climate change in the Dansgaard-Oeschger bands during the last glacial cycle with shared frequencies between 0.75 and 2.5 kyear. Correlation of highs in Bengal Fan physical properties to lows in the d18O record of the GISP2 ice-core suggests that times of greater sediment transport energy in the Bay of Bengal are associated with cooler air temperatures over Greenland. Teleconnections were probably established through moisture and other greenhouse-gas forcing that could have been initiated by instabilities in the methane hydrate reservoir in the oceans.
Resumo:
The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.
Resumo:
Decomposition of organic matter combined with density stratification generate a pronounced intermediate water oxygen minimum zone (OMZ) in the northwest Indian Ocean. This zone currently lies between water depths of 200 and 2000 m and extends approximately 5000 km southeast from the Arabian coast. Based upon benthic foraminiferal assemblage changes, it has been suggested that this OMZ was even more extensive during the late Miocene-early Pliocene (6.5-3.0 Ma), with a maximum volume and/or intensity at approximately 5.0 Ma. While this inference may contribute to an understanding of the history of northwest Indian Ocean upwelling, corroborating geochemical evidence for this interpretation has heretofore been lacking. Ocean Drilling Program (ODP) sites 752, 754, and 757 on Broken and Ninetyeast ridges are located within central Indian Ocean intermediate water depths (1086-1650 m) but outside the present lateral dimensions of the Indian Ocean OMZ. High-resolution chemical analyses of sediment from these sites indicate significant reductions in the flux of Mn and normalized Mn concentrations between 6.5 and 3.0 Ma that are most pronounced at approximately 5.0 Ma. Because late Miocene-Pliocene paleodepths for these sites were essentially the same as at present and because extremely low sedimentation rates (0.3-1.3 cm/ky) most likely precluded sedimentary metal oxide diagenesis, we suggest that the observed Mn depletions reflect diminished deposition of reducible Mn oxyhydroxide phases within O2 deficient intermediate waters and that this effect was most intense at approximately 5.0 Ma. This interpretation implies that waters with less than 2.0 mL/L O2 extended at least 1500 km beyond their present limits and is consistent with changes in benthic foraminifera assemblages. We further suggest this expanded Indian Ocean OMZ is related to regionally and/or globally increased biological productivity.