25 resultados para Chain Split and Computations in Practical Rule Mining


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea surface temperatures (SSTs) derived from the alkenone UK'37) record of Quaternary sediments may be subject to bias if algae with different temperature sensitivities have contributed to the sedimentary alkenone record. The alkenone-derived SST records are usually based on a UK'37-temperature relationship which was measured in culture experiments using the coccolithophorid Emiliania huxleyi (F.G. Prahl, L.A. Muehlhausen and D.L. Zahnle, 1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, 2303-2310). To assess possible effects of past species changes on the UK'37-temperature signal, we have analyzed long-chain alkenones and coccolithophorids in a late Quaternary sediment core from the Walvis Ridge and compared the results to SST estimates extracted from the d18O record of the planktonic foraminifer Globigerinoides ruber. Alkenones and isotopes were determined over the entire 400-kyr core record while the coccolithophorid study was confined to the last 200 kyr when the most pronounced changes in alkenone content occurred. Throughout oxygen-isotope stages 6 and 5, species of the genus Gephyrocapsa were the predominating coccolithophorids. E. huxleyi began to increase systematically in relative abundance since the stage 5/4 transition, became dominant over Gephyrocapsa spp. during stage 3 and reached the highest abundances in the Holocene. Carbon-normalized alkenone concentrations are inversely related to the relative abundances of E. huxleyi, and directly related to that of Gephyrocapsa spp., suggesting that species of this genus were the principal alkenone contributors to the sediments. Nevertheless, SST values obtained from the UK'37-temperature relationship for E. huxleyi compare favourably to the isotope-derived temperatures. The recently reported UK'37-temperature relationship for a single strain of Gephyrocapsa oceanica (J.K. Volkman. S.M. Barrett, S.I. Blackburn and E.L. Sikes, 1995. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate. Geochim. Cosmochim. Acta 59, 513-520) produces unrealistically high SST values indicating that the temperature response of the examined strain is not typical for the genus Gephyrocapsa. This is supported by the C37:C38, alkenone ratios of the sediments which are comparable to average ratios reported for E. huxleyi, but significantly higher than for the G. oceanica strain. Most notably, the general accordance of the alkenone characteristics between sediments and E. huxleyi persists through stages 8 to 5 and even in times that predate the first appearance of this species (268 ka; H.R. Thierstein, K.R. Geitzenauer and B. Molfino, 1977. Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes. Geology 5, 400-404). Our results suggest that UK'37-temperature relationships based on E. huxleyi produce reasonable paleo-SST estimates even for late Quaternary periods when this species was scarce or absent because other alkenone-synthesizing algae, e.g. of the genus Gephyrocapsa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical and mineralogical compositions of ferromanganese oxide coatings on rocks dredged from the New England Seamounts, the Sierra Leone Rise and the Mid-Atlantic Ridge near the Equator have been determined in an investigation of regional differences in Atlantic ferromanganese deposits. Most encrustations are clearly of hydrogenous origin, consisting mainly of todorokite and delta MnO2, but several recovered from the equatorial fracture zones may be hydrothermal accumulations. Differences in the chemistry of the water column and in growth rates of the ferromanganese coatings may be important in producing this regional contrast in composition. Fine-scale changes in element abundances within the encrustations indicate that the nature of the substrate has little influence on compositional variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Culture and mesocosm experiments are often carried out under high initial nutrient concentrations, yielding high biomass concentrations that in turn often lead to a substantial build-up of DOM. In such experiments, DOM can reach concentrations much higher than typically observed in the open ocean. To the extent that DOM includes organic acids and bases, it will contribute to the alkalinity of the seawater contained in the experimental device. Our analysis suggests that whenever substantial amounts of DOM are produced during the experiment, standard computer programmes used to compute CO2 fugacity can underestimate true fCO2 significantly when the computation is based on AT and CT. Unless the effect of DOM-alkalinity can be accounted for, this might lead to significant errors in the interpretation of the system under consideration with respect to the experimentally applied CO2 perturbation. Errors in the inferred fCO2 can misguide the development of parameterisations used in simulations with global carbon cycle models in future CO2-scenarios. Over determination of the CO2-system in experimental ocean acidification studies is proposed to safeguard against possibly large errors in estimated fCO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition (ACEX)) a more than 200 m thick sequence of Paleogene organic carbon (OC)-rich (black shale type) sediments was drilled. Here we present new biomarker data determined in ACEX sediment samples to decipher processes controlling OC accumulation and their paleoenvironmental significance during periods of Paleogene global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers including n-alkanes, fatty acids, isoprenoids, carotenoids, hopanes/hopenes, hopanoic acids, aromatic terpenoids, and long-chain alkenones show a high variability of components, derived from marine and terrestrial origin. The distribution of hopanoic acid isomers is dominated by compounds with the biological 17beta(H), 21beta(H) configuration indicating a low level of maturity. On the basis of the biomarker data the terrestrial OC supply was significantly enriched during the late Paleocene and part of the earliest Eocene, whereas increased aquatic contributions and euxinic conditions of variable intensity were determined for the Paleocene-Eocene thermal maximum and Eocene thermal maximum 2 events as well as the middle Eocene time interval. Furthermore, samples from the middle Eocene are characterized by the occurrence of long-chain alkenones, high proportions of lycopane, and high ratios (>0.6) of (n-C35 + lycopane)/n-C31. The occurrence of C37-alkenenones, which were first determined toward the end of the Azolla freshwater event, indicates that the OC becomes more marine in origin during the middle Eocene. Preliminary UK'37- based sea surface temperature (SST) values display a longterm temperature decrease of about 15C during the time interval 49-44.5 Ma (25° to 10°C), coinciding with the global benthic d18O cooling trend after the early Eocene climatic optimum. At about 46 Ma, parallel with onset of ice-rafted debris, SST (interpreted as summer temperatures) decreased to values <15°C. For the late early Miocene a SST of 11°-15°C was determined. Most of the middle Eocene ACEX sediments are characterized by a smooth short-chain n-alkane distribution, which may point to natural oil-type hydrocarbons from leakage of petroleum reservoirs or erosion of related source rocks and redeposition.