61 resultados para CFU, colony-forming unit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data contain source data for Figure 5c from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. Retrovirally transduced CFU-E cells were incubated with increasing Epo concentrations for 14 h and proliferation was measured by [3H]-thymidine incorporation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facultative and obligate oligotrophs have been enumerated in March/April 1990 by the MPN-method with 14C-protein hydrolysate as tracer substrate. Obligate (10-3360 cells/ml) and facultative (110-9000 cells/ml) oligotrophs revealed to be the dominant population above Gunnerus Ridge (65°30'-68°S; 31-35°E) at a depth of 25 m compared with eutrophic bacteria (5 to 260 CFU/ml). Above Astrid Ridge (65-68°S; 8-18°E), obligate (0-1100 cells/ml) and facultative oligotrophs (300-9000 cells/ml) were also abundant but not always dominant. Bacterial biomass above Gunnerus Ridge was only between 7.3 and 43.6% of particulate biomass, but biomass of bacteria above Astrid Ridge amounted from 56.9 to >100% of particulate biomass; an exception was station no. PS16/552 with only 22.2% of bacterial biomass. Ratio of bacterial biomass to particulate biomass was negatively correlated with maximal primary production, complementing the view that phytoplankton was the dominant population above Gunnerus Ridge, whereas bacteria predominated above Astrid Ridge. Eutrophic bacteria were also more abundant above Astrid Ridge, with 3 to 6380 CFU/ml. Total bacteria by acridine orange direct counts amounted from 1 x 10**4 to 34.2 x 10**4 cells/ml. Bacterial biomass above Gunnerus Ridge was 1.8 to 10.7, and above Astrid Ridge 5.7 to 13.6 mg C/m*3. Maximal primary production above Gunnerus Ridge was 4.5 to 11.0, and above Astrid Ridge 2.3 to 3.5 mg C/m**3/d.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present dataset contain source data for Figure 5a from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. Phosphorylation levels of JAK2 at 7 min after stimulation for Epo concentrations ranging from 0.1 to 1000 U/ml were simulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present dataset contain source data for Figure 5b from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. They show integrated responses of double-phosphorylated ERK1 and ERK2 that were calculated for different Epo concentrations for the original model as well as for models with elevated ERK1 or ERK2 levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present dataset data contain source data for Figure 5a from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. CFU-E cells were stimulated with the indicated Epo concentrations for 7 min and phosphorylation levels were determined by quantitative immunoblotting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have discussed the consequences of ocean acidification for bacterial processes and diversity. However, the decomposition of complex substrates in marine environments, a key part of the flow of energy in ecosystems, is largely mediated by marine fungi. Although marine fungi have frequently been reported to prefer low pH levels, this group has been neglected in ocean acidification research. We present the first investigation of direct pH effects on marine fungal abundance and community structure. In microcosm experiments repeated in 2 consecutive years, we incubated natural North Sea water for 4 wk at in situ seawater pH (8.10 and 8.26), pH 7.82 and pH 7.67. Fungal abundance was determined by colony forming unit (cfu) counts, and fungal community structure was investigated by the culture-independent fingerprint method Fungal Automated Ribosomal Intergenic Spacer Analysis (F-ARISA). Furthermore, pH at the study site was determined over a yearly cycle. Fungal cfu were on average 9 times higher at pH 7.82 and 34 times higher at pH 7.67 compared to in situ seawater pH, and we observed fungal community shifts predominantly at pH 7.67. Currently, surface seawater pH at Helgoland Roads remains >8.0 throughout the year; thus we cannot exclude that fungal responses may differ in regions regularly experiencing lower pH values. However, our results suggest that under realistic levels of ocean acidification, marine fungi will reach greater importance in marine biogeochemical cycles. The rise of this group of organisms will affect a variety of biotic interactions in the sea.