16 resultados para C 71, D 63
Resumo:
At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.
Resumo:
The Climatological Database for the World's Oceans: 1750-1854 (CLIWOC) project, which concluded in 2004, abstracted more than 280,000 daily weather observations from ships' logbooks from British, Dutch, French, and Spanish naval vessels engaged in imperial business in the eighteenth and nineteenth centuries. These data, now compiled into a database, provide valuable information for the reconstruction of oceanic wind field patterns for this key period that precedes the time in which anthropogenic influences on climate became evident. These reconstructions, in turn, provide evidence for such phenomena as the El Niño-Southern Oscillation and the North Atlantic Oscillation. Of equal importance is the finding that the CLIWOC database the first coordinated attempt to harness the scientific potential of this resource represents less than 10 percent of the volume of data currently known to reside in this important but hitherto neglected source.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Siliceous skeletons were investigated in two core profiles (9 cores), one off Cap de Sines, Portugal and the other off Cap de Mazagan, Morocco. Total number of skeletons was determined per gram of dried sediment at different core depths of the fraction >21 µ. Results are compared with a core profile from the Arabian Sea. Diatoms are of four groups: (A) marine-planktonic, B) marine-benthic, (C) freshwater and (D) Tertiary species (Trinacria e.g.). Species from groups (B), (C) and (D) are redeposited in all cores taken at a water depth of greater than 100 m. Small numbers of Silicoflagellates and Radiolarians were found throughout the cores from the Ibero-Moroccan shelf. In the Arabian Sea core, Radiolarians were concentrated in distinct horizons in which Tertiary material was redeposited (40-50, 140-150, 250-260 cm). The number of siliceous skeletons per gram of dried sediment decreases more or less rapidly with increasing depth in all cores. Whereas about 2500 skeletons were found in sediments close to the surface, approximately 100 skeletons only were found in deeper (>40 cm) layers. Deeper horizons with more than 100 specimens were interpreted as redeposited material. This sediment contained robust skeletons, resistant against dissolution, as well as benthic and Tertiary material. The decrease of siliceous skeletons relative to core depth depends upon the sedimentation rate. Where the sedimentation rate is high, the opal dissolution zone extends down to 30-60 cm, where the sedimentation rate is low, it is located at 10-30 cm. Below these depths opals disappears. These zones also have approximately the same age (4000 years) everywhere. Siliceous skeletons dissolve differentially, first the Silicoflagellates disappear, second the Diatoms, third the Radiolarians, and fourth the Sponge Spicules. Surface structure of skeletons from near the opal dissolution zones are similar to those of skeletons treated with NaOH. Tertiary diatoms (Trinacria e. g.) and benthic diatoms (Campylodiscus e.g.) dissolve less rapidly than skeletons of modern planktonic diatoms (Coscinodiscus e.g.). The time control of the opal dissolution zones appeared rather independent of various oceanic influences. No evidence was found for effects from upwelling either off Portugal or off Morocco. No difference in dissolution rates was recorded between the abyssal plains lying off these two areas. Likewise, there was no change in solution rates from Pleistocene to Holocene within either one of the abyssal plains. The Mediterranean outflow, which is enriched in dissolved silica, apparently had no effect on dissolution rates of siliceous skeletons in the sediment.
Resumo:
Biostratigraphy and paleoenvironmental history of deep and surficial waters of the Japan Sea are addressed using sequences recovered from the floor of the backarc basin. The study is divided into two parts: (1) foraminifer biostratigraphy and paleoenvironmental assessment of sedimentary sequences recovered from above igneous basement at the four sites and (2) detailed planktonic foraminifer paleoenvironmental analysis of Quaternary and Pliocene sequences from Sites 794 and 797 in the Yamato Basin. A total of 253 samples were examined for the foraminifer biostratigraphy and 325 samples for the detailed paleoenvironmental study of Quaternary and Pliocene sequences. Low abundance and sporadic occurrence of foraminifers limited interpretation of results. Foraminifer-bearing intervals were correlated where possible to diatom and calcareous nannofossil zonations, and the sequences were successfully assigned to the foraminifer zonation of Matsunaga. Unfortunately, extensive barren intervals and sporadic occurrences of planktonic foraminifers prevented zonation of Quaternary and Pliocene intervals, although some interesting conclusions about paleoenvironment were possible and are listed below. A sequence of Neogene (sensu lato) paleoenvironmental events were identified: (1) deepening of the Yamato basins to middle bathyal depths by the early to middle Miocene, an event contemporaneous with the age of some deep basins known from uplifted sections adjacent to the Japan Basin; (2) cooling of the Japan Sea in the early middle Miocene; (3) oxygenation of deep waters in the late Miocene; (4) further cooling of surficial water masses between the Olduvai Subchron and the Brunhes/Matuyama Boundary; and (5) extermination of lower middle bathyal faunas and replacement by upper middle bathyal faunas near the base of the Quaternary.
Resumo:
Early Miocene to Quaternary benthic foraminifers have been quantitatively studied (>63 ?m size fraction) in a southwest Pacific traverse of DSDP sites at depths from about 1300 to 3200 m down the Lord Howe Rise (Site 590,1299 m; Site 591, 2131 m; Site 206, 3196 m). Benthic foraminiferal species smaller than 150 µm are by far dominant in the samples, averaging from 78 to 89% of the total benthic foraminiferal assemblages in the three sites examined. Although about 150 benthic foraminiferal species or taxonomic groups have been identified, only a few species dominate the assemblages. These dominant species include Epistominella exigua, E. rotunda, and Globocassidulina subglobosa, which prevail in the three sites, and Oridorsalis umbonatus, E. umbonifera, and Cassidulina carinata, which occur usually in frequencies of between 10 and 30%. Faunal changes in Neogene benthic foraminiferal assemblages are not similar in each of the three sites, but faunal successions are most similar between the two shallowest sites. The deepest site differs in composition and distribution of dominant species. There are three intervals during which the most important changes occur in benthic foraminiferal assemblages: the early middle Miocene (14 Ma; the Orbulina suturalis Zone and the Globorotalia fohsi s.l. Zone); the late Miocene (6 Ma; the Globigerina nepenthes Zone) and near the Pliocene/Pleistocene boundary at about 2 Ma. A Q-mode factor analysis of the faunal data has assisted in recognizing assemblage changes during the Neogene at each of the sites. Early Miocene assemblages were dominated by Globocassidulina subglobosa at Site 590 (1299 m), by G. subglobosa and Oridorsalis umbonatus at Site 591 (2131 m), and by G. subglobosa, E. exigua, and Bolivina pusilla at Site 206 (3196 m). In the early middle Miocene at Sites 590 and 591, a marked increase occurred in the frequencies of E. exigua. Epistominella exigua reached maximum abundance in the early Miocene in the deeper Site 206, and in the middle and early late Miocene in the shallower Sites 590 and 591. In the late Miocene, a spike occurred in the frequencies of E. umbonifera in Site 206, whereas the dominant species changed from E. exigua to E. rotunda at Site 590. Latest Miocene to late Pliocene assemblages were dominated by E. rotunda at Site 590, by E. exigua at Site 591, and by G. subglobosa-E. exigua (early Pliocene) and E. rotunda-E. exigua (late Pliocene) at Site 206. At the Pliocene/Pleistocene boundary, E. exigua temporarily diminished in importance at Sites 591 and 206. Quaternary assemblages were dominated by E. rotunda and Cassidulina carinata at Site 590, by E. rotunda at Site 591, and by E. exigua at Site 206. These major faunal changes are all associated with known major paleoceanographic events-the middle Miocene development of the Antarctic ice sheet; the latest Miocene global cooling and increased polar glaciation; and the onset of quasiperiodic glaciation of the Northern Hemisphere. These major paleoceanographic events undoubtedly had a profound effect on the intermediate and deep water mass structure of the Tasman Sea as recorded by changes in benthic foraminiferal assemblages.
Resumo:
Temporal changes in benthic foraminiferal assemblages were quantitatively examined (> 63 µm fraction) in four southwest Pacific deep-sea Neogene sequences in a depth transect between approximately 1300 and 3200 m to assist in evaluating paleoeeanographic history. The most conspicuous changes in benthic foraminiferal assemblages occurred in association with paleoclimatic changes defined at least in part by oxygen isotopic changes. The largest, centered at ~15 Ma (early Middle Miocene), is represented by an increase in the relative frequencies of Epistominella exigua, which underwent a major upward depth migration at that time. This was contemporaneous with the well-known positive oxygen isotopic shift in the early Middle Miocene. In Sites 588 and 590, most of the increase in relative abundances of E. exigua occurred during the middle to later part of the ~80 shift, following major growth of the east Antarctic ice sheet. Later assemblage changes occurred at 8.5 and 6.5 Ma. These associations indicate that the benthic foraminiferal assemblages in this depth transect largely adjusted to changes in deep waters related to Antarctic cryospheric evolution. In general, the Neogene benthic foraminiferal assemblages in this region underwent little change during the last 23 million years. This faunal conservatism suggests that deep-sea environments underwent relatively little change in the southwest Pacific during much of the Neogene. Although paleoceanographic changes did occur, partly in response to highlatitude cryospheric evolution, these were not of sufficient magnitude to create major deep-sea faunal changes in this part of the ocean. The benthic foraminiferal assemblages are dominated by individuals smaller than 150 µm. Most taxonomic turnover occurred in the larger (> 150 µm) size fractions.
Resumo:
Copper porphyrins have been recognized as natural constituents of marine sediments only within the past 5 years (Palmer and Baker, 1978, Science201, 49-51). In that report it was suggested that these pigments may derive from and be markers for oxidized terrestrial organic matter redeposited in the marine environment. In the present study we describe the distribution of copper porphyrins in sediments from several north Pacific and Gulf of California DSDP/IPQD sites (Legs 56,63,64). These allochthonous pigments have now been found to be accompanied by identical arrays of highly dealkylated nickel etioporphyrins. Evaluation of data from this and past studies clearly reveals that there is a strong carbon-number distribution similarity betweeen coincident Cu and Ni etioporphyrins. This homology match is taken as reflecting a common source for the tetrapyrrole ligands of this population of Cu and Ni chelates. Predepositional generation of these highly dealkylated etioporphyrins is concluded from the occurrence of these pigments in sediments continuing essentially all stages of in situ chlorophyll diagenesis (cf. Baker and Louda, 1983). That is, their presence is not regulated by the in situ diagenetic continuum. Thus, the highly dealkylated Cu and Ni etioporphyrins represent an 'allochthonous' background over which 'autochthonous' (viz. marine produced) chlorophyll derivatives are deposited and are undergoing in situ diagenesis.
Resumo:
During the "Meteor"-Expedition to the Persian Gulf in March-May 1965, approximately 300 samples were collected. Most of them have been already studied by various authors in sedimentological as well as micropaleontological respects. 49 samples were selected for ostracode studies. These samples are arranged to form a long-axis section ("Laengsprofil"), and 4 shorter cross-profiles, perpendicular to the long-axis profile in the Persian Gulf and Gulf of Oman. 52 species of ostracodes in this area were specifically determined; 39 of them are described under open nomenclature. 13 species are already known from surrounding sea areas: 2 species from the Red Sea; 2 species from the east coast of Africa; 1 species from the Mediterranean Sea; and others from the Indian and Pacific Oceans. 12 species show close relationships to species from the Indopacific Ocean. The ostracode species found in the area can be grouped after the method of BRAUN-BLANQUT into 2 bioassociations. Association 1 with the following 4 characteristic species : Cytherella cf. pulchra, Loxoconcha sp. A, Neomonoceratina sp. A, Alocopocythere reticulata. Association 2 with 1 characteristic species: Ruggieria (Ruggieria) sp. B. The association 1 is widespread in the entire studied area of the Persian Gulf, where it is considered to characterize the shallow water region down to 200 m. The association 2 is restricted to the deeper water below 200 m of the inner part of the Oman Gulf. Only a few species known from the shallow water association of the Persian Gulf are present. Within the two ostracode associations mentioned above 4 zones from the total studied area could be related to the water depth. The zones A-D are characterized more or less readily by the relative abundance of certain species: Zone A : 7-30 m depth, on substrates of poorly coarse-grained clayey marl; Zone B: 30-94 m depth, on substrates of richly coarse-grained calcareous marl; Zone C: 94-1961208 m depth, on substrates of richly coarse-grained calcareous marl; Zone D: 196/208-500 m depth, on substrates of calcareous clay, poor in benthos. The regional and bathymetric distribution of the ostracode fauna in the area studied was compared in relation to 10 environmental factors: water depth, temperature, salinity, water density, O2-concentration, phosphate-silica contents, pH-values, stratification of the water body, water currents and type of sediments. The major environmental factors which appear to control the ostracode distribution are water depth (as a complex factor), O2-concentration and the type of sediment. At 3 stations (GIK01058, GIK01074 and GIK01204) species of the shallow water association were found together with a few bathyal species. These stations are situated at the outer Biaban shelf, in an area where the bottom water of the Persian Gulf flows down the slope towards the Oman Gulf. Several samples of the Zone B in the major part of the Persian Gulf show also a high species diversity containing a high percentage of subfossil ostracode carapaces. It is probable that the recent biocoenosis has been mixed with a late quarternary thanatocoenosis.