161 resultados para Ark of the Covenant.
Resumo:
During the RV Polarstern cruise ARK-XXVII/3 to the Arctic Ocean in summer 2012, when sea ice declined to a record minimum bottom, sediments were collected with a TV-guided multicorer at stations in the Nansen and Amundsen basin. Chlorophyll a and phaeopigments were extracted from sediments with acetone using three replicates per station. The concentrations in the acidified supernatants were measured with a Turner Trilogy fluorometer (Boetius and Damm, 1998). The sum of chlorophyll a and phaeopigments is expressed as chloroplast pigment equivalents (CPE) (Thiel, 1982).
Resumo:
During the RV Polarstern cruise ARK-XXVII/3 to the Arctic Ocean in summer 2012, when sea ice declined to a record minimum bottom, water and sediment pore water samples were collected with a TV-guided multicorer at stations in the Nansen and Amundsen basin. 50 ml sediment pore water samples were collected from 0-1, 1-5 and 5-10 cm sediment depths from up to 4 parallel sediment cores at each station. Additionally, overlying bottom waters were carefully collected from undisturbed sediment cores. Acidified pore water samples (pH2) were used for analysis of DOC and TDN concentrations. The measurements were performed by hand injection via catalytic oxidation at high temperature on a TOC-V Shimadzu instrument.
Resumo:
Marine organic matter (OM) sinks from surface waters to the seafloor via the biological pump. Benthic communities, which use this sedimented OM as energy and carbon source, produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. We hypothesized that in the oligotrophic deep Arctic basin the molecular signal of freshly deposited primary produced OM is restricted to the surface sediment pore waters which should differ from bottom water and deeper sediment pore water in DOM composition. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether the signal of marine vs. terrigenous DOM is represented by different compounds preserved in the sediment pore waters and 3) whether there is any relation between Arctic Ocean ice cover and DOM composition. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer, were correlated with environmental parameters by partial least square analysis. The fresher marine detrital OM signal from surface waters was limited to pore waters from < 5 cm sediment depth. The productive ice margin stations showed higher abundances of peptides, unsaturated aliphatics and saturated fatty acids formulae, indicative of fresh OM/pigments deposition, compared to northernmost stations which had stronger aromatic signals. This study contributes to the understanding of the coupling between the Arctic Ocean productivity and its depositional regime, and how it will be altered in response to sea ice retreat and increasing river runoff.
Resumo:
During a winter expedition to the western Barents Sea in March 2003, benthic amphipods of the species Anonyx sarsi were observed directly below pack ice. Only males and juveniles [16.0-37.0 mm long, 16.2-120.8 mg dry mass (DM)] were collected. Guts contained macroalgal fibres, fish eggs and flesh from large carrion. Amphipods had very low levels of total lipids (2.7-17.2% DM). Analysis of lipid biomarkers showed that some of the specimens had preyed on pelagic copepods. Individual respiration rates ranged over 0.4-1.7 ml O2/day (mean: 1.2 ml, SD: 0.5 ml). Individual ammonia excretion rates varied between 7.8 µg and 49.3 µg N/day (mean: 30.7 µg, SD: 15.2 µg). The atomic O:N ratio ranged over 35 to 71 (mean: 55, SD: 14), indicating lipid-dominated metabolism. Mass-specific respiration ranged over 9.8-16.6 ml O2/day/g DM (mean: 13.1 ml, SD: 2.2 ml). The metabolic rates of A. sarsi were twice as high as those of the truly sympagic amphipod Gammarus wilkitzkii, which is better adapted to the under-ice habitat by its energy-saving attached lifestyle. It is concluded that males and juveniles of A. sarsi were actively searching for food in the water column and at the ice underside, but that the nutritional status of the amphipods in late Arctic winter was generally very poor.
Resumo:
The Håkon Mosby Mud Volcano is a natural laboratory to study geological, geochemical, and ecological processes related to deep-water mud volcanism. High resolution bathymetry of the Håkon Mosby Mud Volcano was recorded during RV Polarstern expedition ARK-XIX/3 utilizing the multibeam system Hydrosweep DS-2. Dense spacing of the survey lines and slow ship speed (5 knots) provided necessary point density to generate a regular 10 m grid. Generalization was applied to preserve and represent morphological structures appropriately. Contour lines were derived showing detailed topography at the centre of the Håkon Mosby Mud Volcano and generalized contours in the vicinity. We provide a brief introduction to the Håkon Mosby Mud Volcano area and describe in detail data recording and processing methods, as well as the morphology of the area. Accuracy assessment was made to evaluate the reliability of a 10 m resolution terrain model. Multibeam sidescan data were recorded along with depth measurements and show reflectivity variations from light grey values at the centre of the Håkon Mosby Mud Volcano to dark grey values (less reflective) at the surrounding moat.
Resumo:
The Denmark Strait Overflow (DSO) today compensates for the northward flowing Norwegian and Irminger branches of the North Atlantic Current that drive the Nordic heat pump. During the Last Glacial Maximum (LGM), ice sheets constricted the Denmark Strait aperture in addition to ice eustatic/isostatic effects which reduced its depth (today ~630 m) by ~130 m. These factors, combined with a reduced north-south density gradient of the water-masses, are expected to have restricted or even reversed the LGM DSO intensity. To better constrain these boundary conditions, we present a first reconstruction of the glacial DSO, using four new and four published epibenthic and planktic stable-isotope records from sites to the north and south of the Denmark Strait. The spatial and temporal distribution of epibenthic delta18O and delta13C maxima reveals a north-south density gradient at intermediate water depths from sigma0 ~28.7 to 28.4/28.1 and suggests that dense and highly ventilated water was convected in the Nordic Seas during the LGM. However, extremely high epibenthic delta13C values on top of the Mid-Atlantic Ridge document a further convection cell of Glacial North Atlantic Intermediate Water to the south of Iceland, which, however, was marked by much lower density (sigma0 ~28.1). The north-south gradient of water density possibly implied that the glacial DSO was directed to the south like today and fed Glacial North Atlantic Deep Water that has underthrusted the Glacial North Atlantic Intermediate Water in the Irminger Basin.
Resumo:
This work is the first detailed description of the Late Pleistocene-Holocene and Recent Ostracoda of the Laptev Sea. A total of 45 species in 22 genera and 13 families have been identified. All these species are described monographically. Three different ecological assemblages of ostracodes corresponding to different combinations of environmental parameters have been established; they are restricted to three regions of the sea: western-central, eastern, and southern. The recent ostracode assemblages of the Laptev Sea have been compared with those from other Arctic areas and are most similar to those of the Beaufort and Kara seas. Data on recent Ostracoda are used for paleoenvironmental reconstructions on the eastern shelf and western continental slope of the Laptev Sea. For this purpose, ostracodes from five sections obtained from these parts of the sea have been examined. The oldest sediments, which are of Late Pleistocene age (15.8 cal. ka BP), have been recovered in a core from the western continental slope. These yielded five ostracode assemblages, which correspond to different paleoenvironments and replaced each other in the course of the rapid postglacial sea-level rise, thus showing variations in the Atlantic water inflow from the west and freshwater discharge from the subaerially exposed shelf. On the outer shelf of the eastern part of the sea, the rapid sea-level rise in the Early Holocene (lowermost dating 11.3 cal. ka BP) led to a rapid transition from assemblages of brackish-water nearshore environments to those of modernlike normal marine environments; modern environments were established about 8.2 cal. ka ago. Since core sections from the inner shelf correspond to the time when the level of the sea had already reached its modern values, changes in taxonomic composition of ostracode assemblages primarily mirror variations in river runoff.