148 resultados para Architecture of South East Queensland
Resumo:
Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.
Resumo:
In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001 - the PLEA project. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Habitats were mapped using a combination of towed GPS photo transects, aerial photography and expert knowledge. This data provides georeferenced information regarding the major features of each of the Point Lookout Dive Sites.
Resumo:
In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Methodology used for the PLEA project was based on the 2001 survey protocols, Reef Check Australia protocols and Coral Watch methods. This hybrid methodology was used to monitor substrate and benthos, invertebrates, fish, and reef health impacts. Additional analyses were conducted with georeferenced photo transects. The PLEA marine surveys were conducted over six weekends in 2014 totaling 535 dives and 376 hours underwater. Two training weekends (February and March) were attended by 44 divers, whilst biological surveys were conducted on seasonal weekends (February, May, July and October). Three reefs were surveyed, with two semi-permanent transects at Flat Rock, two at Shag Rock, and one at Manta Ray Bommie. Each transect was sampled once every survey weekend, with the transect tapes deployed at a depth of 10 m below chart datum. Fish populations were assessed using a visual census along 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape), 5 m high and 20 m in length. Fish families and species were chosen that are commonly targeted by recreational or commercial fishers, or targeted by aquarium collectors, and that were easily identified by their body shape. Rare or otherwise unusual species were also recorded. Target invertebrate populations were assessed using visual census along 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape) and 20 m in length. The diver surveying invertebrates conducted a 'U-shaped' search pattern, covering 2.5 m on either side of the transect tape. Target impacts were assessed using a visual census along the 3 x 20 m transects. Each transect was 5 m wide (2.5 m either side of the transect tape) and 20 m in length. The transect was surveyed via a 'U-shaped' search pattern, covering 2.5 m on either side of the transect tape. Substrate surveys were conducted using the point sampling method, enabling percentage cover of substrate types and benthic organisms to be calculated. The substrate or benthos under the transect line was identified at 0.5m intervals, with a 5m gap between each of the three 20m segments. Categories recorded included various growth forms of hard and soft coral, key species/growth forms of algae, other living organisms (i.e. sponges), recently killed coral, and, non-living substrate types (i.e. bare rock, sand, rubble, silt/clay).
Resumo:
In order to reconstruct Late Quatemary variations of surface oceanography in the eastequatorial South Atlantic, time series of sea-surface temperatures (SST) and paleoproductivity were established from cores recovered in the Guinea and Angola Basins, and at the Walvis Ridge. These records, based on sedimentary alkenone and organic carbon concentrations, reveal that during the last 350,000 years surface circulation and productivity changes in the east-equatorial South Atlantic were highiy sensitive to climate forcing at 23- and 100-kyr periodicities. Covarying SST and paleoproductivity changes at the equator and at the Walvis Ridge appear to be driven by variations in zonal trade-wind intensity, which forces intensification or reduction of coastal and equatorial upwelling, as well as enhanced Benguela cold water advection from the South. Phase relationships of precessional variations in the paleoproductivity and SST records from the distinct sites were evaluated with respect to boreal summer insolation over Africa, movements of southem ocean thermal fronts, and changes in global ice volume. The 23-kyr phasing implies a sensitivity of eastem South Atlantic surface water advection and upwelling to West African monsoon intensity and to changes in the position ofthe subtropical high pressure cell over the South Atlantic, both phenomena which modulate zonal strength of southeasterly trades. SST and productivity changes north of 20°S lack significant variance at the 41-kyr periodicity; and at the Walvis Ridge and the equator lead changes in ice volume. This may indicate that obliquity-driven clirnate change, characteristic for northem high latitudes, e.g fluctuations in continental ice masses, did not substantially influence subtropical and tropical surface circulation in the South Atlantic. At the 23-kyr cycle SST and productivity changes in the eastern Angola Basin lag those in the equatorial Atlantic and at the Walvis Ridge by about 3500 years. This lag is explained by variations in cross-equatorial surface water transport and west-east countercurrent retum flow modifying precessional variations of SST and productivity in the eastem Angola Basin relative to those in the mid South Atlantic area under the central field of zonal trade winds. Sea level-related shifts of upwelling cells in phase with global clirnate change may be also recorded in SST and productivity variability along the continental margin off Southwest Africa. They may account for the delay of the paleoceanogreaphic signal from continental margin sites with respect to that from the pelagic sites at the equator and the Walvis Ridge.
Resumo:
Macrobenthos biomass and bottom biocoenoses were studied in the sublittoral zone of the southern East Siberian Sea. The macrobenthos is characterized by relatively high abundance (from 30 to 2680 #/m**2), biomass (from 0.25 to 578.8 g/m**2), and diversity (83 species in total). Lateral distribution of macrobenthos biomass correlates with a substrate type and salinity and is substantially higher in areas washed by the Arctic water mass than in estuaries with mixed fresh and Arctic waters and shows a tendency to decreasing in the convergence zone of different water masses. The highest macrobenthos biomass is observed in cores of water masses in the Long Strait area and in the eastern part of the sea.
Resumo:
The late Quaternary sequence off eastern South Island, New Zealand, consists of ~100 m of alternating bluish gray pelagic oozes and greenish gray hemipelagic oozes that extend uninterruptedly back to the Brunhes/Matuyama boundary (0.73 m.y.). A very high resolution (~2400 yr.) record of sediment texture, calcium carbonate content, and planktonic and benthic foraminiferal oxygen and carbon isotope composition demonstrates an in-phase cyclical fluctuation between the sedimentary parameters that closely correspond to the pelagic-hemipelagic sedimentation cycles and the isotope composition. Pelagic oozes, formed during interglacial periods of high eustatic sea level, are characterized by calcareous microfossils, relative enrichment in sand and clay sizes, high carbonate contents, reduced delta18O values, and increased delta13C values. Hemipelagic oozes, associated with glacial episodes and lowered eustatic sea level, include common terrigenous material and siliceous microfossils, are enriched in silt sizes, have low carbonate contents, high delta18O values, and low delta13C values. The history of alpine glaciations and associated erosion of the South Island of New Zealand, as expressed by the appearance of hemipelagic oozes, can be correlated directly with the major fluctuations of Northern Hemisphere ice sheets as expressed by the influence of eustatic sea-level changes on the oxygen isotope composition of both planktonic and benthic foraminifers. This high-accumulation-rate record contains conspicuous intervals of highfrequency, high-amplitude isotope variability including the presence of multiple glacial/interglacial intervals within single isotope stages, and offers one of the best sections cored to date for detailed study of the evolution and history of climate change over the last 0.75 m.y.