137 resultados para Abu ghraib
Resumo:
Pollen and stable carbon (d13C) and hydrogen (dD) isotope ratios of terrestrial plant wax from the South Atlantic sediment core, ODP Site 1085, is used to reconstruct Miocene to Pliocene changes of vegetation and rainfall regime of western southern Africa. Our results reveal changes in the relative amount of precipitation and indicate a shift of the main moisture source from the Atlantic to the Indian Ocean during the onset of a major aridification 8 Ma ago. We emphasise the importance of declining precipitation during the expansion of C4 and CAM (mainly succulent) vegetation in South Africa. We suggest that the C4 plant expansion resulted from an increased equator-pole temperature gradient caused by the initiation of strong Atlantic Meridional Overturning Circulation following the shoaling of the Central American Seaway during the Late Miocene.
Resumo:
The Red Sea is a very young ocean, and is one of the most interesting areas on Earth (ocean in statu nascendi). It is the only ocean where hydrothermal activity associated with ore formation occurs in a sterile environment (anoxic, hot, saline). In addition, its geographical position means that it is predestined to record the monsoonal history of the region in detailed sedimentary sequences. The major aim of the present project is to investigate the dynamics of hydrothermal systems in selected Deeps (Atlantis-II, Discovery, Kebrit, Al Wajh), Additional palaeoceanographic and microbiological questions should also be addressed. Specific aims are: 1. To study the hydrographic changes in individual Deeps (hydrothermal region Atlantis-II) and to investigate the causes of the temperature increase in the last few years (increased heat flow - higher temperature of the brine supply - higher brine flow rates?). 2.a. To document the influence of the hydrothermal systems on the sedimentary organic matter in the Deeps. In particular, the thermogenic production and migration of hydrocarbons in the sediments will be studied. The complex formation mechanisms (bacterial, thermogenic) of short-chain hydrocarbons (trace gases) will also be examined, 2.b. in addition, the polar and macromolecular fraction in samples from the various deeps will be studied in order to elucidate the formation, structure and source of the macromolecular oil fraction. 3. To clarify the palaeoceanographic conditions, sea-level changes and the climatic history (relationship of the circulation system and nutrient supply to the monsoon) of the southern Red Sea. 4. To separate microorganisms from the brines and to characterise them in terms of their metabolic physiology and ecology, and to describe their taxonomy.
Resumo:
ODP Site 1078 situated under the coast of Angola provides the first record of the vegetation history for Angola. The upper 11 m of the core covers the past 30 thousand years, which has been analysed palynologically in decadal to centennial resolution. Alkenone sea surface temperature estimates were analysed in centennial resolution. We studied sea surface temperatures and vegetation development during full glacial, deglacial, and interglacial conditions. During the glacial the vegetation in Angola was very open consisting of grass and heath lands, deserts and semi-deserts, which suggests a cool and dry climate. A change to warmer and more humid conditions is indicated by forest expansion starting in step with the earliest temperature rise in Antarctica, 22 thousand years ago. We infer that around the period of Heinrich Event 1, a northward excursion of the Angola Benguela Front and the Congo Air Boundary resulted in cool sea surface temperatures but rain forest remained present in the northern lowlands of Angola. Rain forest and dry forest area increase 15 thousand years ago. During the Holocene, dry forests and Miombo woodlands expanded. Also in Angola globally recognised climate changes at 8 thousand and 4 thousand years ago had an impact on the vegetation. During the past 2 thousand years, savannah vegetation became dominant.
Resumo:
The distribution of pollen in marine sediments is used to record vegetation change on the continent. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in the marine surface sediments and the occurrence of the source plants on the adjacent continent. To investigate land-sea interactions during deglaciation, we compare proxies for continental (pollen assemblages) and marine conditions (alkenone-derived sea surface temperatures) of two high-resolution, radiocarbon-dated sedimentary records from the tropical southeast Atlantic. The southern site is located West of the Cunene River mouth; the northern site is located West of the Angolan Huambe Mountains. It is inferred that the vegetation in Angola developed from Afroalpine and open savannah during the last Glacial maximum (LGM) via Afromontane Podocarpus forest during Heinrich Event 1 (H1), to an early increase of lowland forest after 14.5 ka. The vegetation record indicates dry and cold conditions during the LGM, cool and wet conditions during H1 and a gradual rise in temperature starting well before the Younger Dryas (YD) period. Terrestrial and oceanic climate developments seem largely running parallel, in contrast to the situation ca. 5° further South, where marine and terrestrial developments diverge during the YD. The cool and wet conditions in tropical West Africa, South of the equator, during H1 suggest that low-latitude insolation variation is more important than the slowdown of the thermohaline circulation for the climate in tropical Africa.
Resumo:
A study of samples from DSDP Leg 47 shows that transformation of organic matter in deep sea sediments is completly analogous to evolution of organic matter in sedimentary sequences on continents and depends on the same factors. Crucial among these factors are: genesis of organic matter, nature of its diagenetic changes, and current stage of catagenesis.