306 resultados para 85-573_Site
Resumo:
The disappearance at ~10 Ma of the deep dwelling planktonic foraminifer Globoquadrina dehiscens from the western Pacific including the South China Sea was about 3 Myr earlier than its final extinction elsewhere. Accompanying this event at ~10 Ma was a series of faunal turnover characterized by increase in mixed layer, warm-water species and decrease to a minimum in deepwater species. Paleobiological and isotopic evidence indicates sea surface warming and a deepened local thermocline that we interpret as related to the development of an early western Pacific warm pool. The stepwise decline of G. dehiscens and other deep dwelling species from the NW and SW Pacific suggests more intensive warm water pileup than equatorial localities where surface bypass flow through the narrowing Indonesia seaway appears to remain efficient during the late Miocene. Planktonic delta18O values from the South China Sea consistently lighter than the tropical western Pacific during the Miocene also suggest, similar to today, more variable hydrologic conditions along the periphery than in the core of the warm pool. Stronger hydrologic variability affected mainly by monsoons and increased thermal gradient along the western margin of the late Miocene warm pool may have contributed to the decline of deep dwelling planktonic species including the early extinction of G. dehiscens from the South China Sea region. The late Miocene warm pool became influential and paleobiologically detectable from ~10 Ma, but the modern warm pool did not appear until about 4 Ma, in the middle Pliocene.
Resumo:
Fifty radiolarian events of early Pleistocene and Neogene age were identified in an E-W transect of equatorial DSDP sites, extending from the Gulf of Panama to the western Pacific and eastern Indian Oceans. Our objective was to document the degree of synchroneity or time-transgressiveness of stratigraphically-useful datum levels from this geologic time interval. We restricted our study to low latitudes within which morphological variations of individual taxa are minimal, the total assemblage diversity remains high, and stratigraphic continuity is well-documented by an independent set of criteria. Each of the five sites chosen (503, 573, 289/586, 214) was calibrated to an "absolute" time scale, using a multiple of planktonic foraminiferal, nannofossil, and diatom datum levels which have been independently correlated to the paleomagnetic polarity time scale in piston core material. With these correlations we have assigned "absolute" ages to each radiolarian event, with a precision of 0.1-0.2 m.y. and an accuracy of 0.2-0.4 m.y. On this basis we have classified each of the events as either: (a) synchronous (range of ages <0.4 m.y.); (b) time-transgressive (i.e., range of ages >1.0 m.y.); and (c) not resolvable (range of ages 0.4-1.0 m.y.). Our results show that, among the synchronous datum levels, a large majority (15 out of 19) are last occurrences. Among those events which are clearly time-transgressive, most are first appearances (10 out of 13). In many instances taxa appear to evolve first in the Indian Ocean, and subsequently in the western and eastern Pacific Ocean. This pattern is particularly unexpected in view of the strong east-to-west zonal flow in equatorial latitudes. Three of the time-transgressive events have been used to define zonal boundaries: the first appearances of Spongaster pentas, Diartus hughesi, and D. petterssoni. Our results suggest that biostratigraphic non-synchroneity may be substantial (i.e., greater than 1 m.y.) within a given latitudinal zone; one would expect this effect to be even more pronounced across oceanographic and climatic gradients. We anticipate that the extent of diachroneity may be comparable for diatom, foraminiferal, and nannofossil datum levels as well. If this proves true, global "time scales" may need to be re-formulated on the basis of a smaller number of demonstrably synchronous events.
Resumo:
Benthic foraminifers were studied in upper Eocene to Recent core-catcher samples from DSDP Sites 573, 574, and 575. The sites are on a north-south transect from the equator to about 05°N at about 133°W, water depth 4300 to 4600 m. At Site 574 additional samples were used to study the Eocene/Oligocene boundary in detail. About 200 specimens were counted per sample. The fauna is highly diverse (about 50 to 70 species per sample) and is of low dominance. The diversity is not related to age or sub-bottom depth. Many species are cosmopolitan and probably have wide environmental tolerances. Fluctuations in frequency of some taxa (e.g., Nuttallides umbonifera, Epistominella exigua, and Uvigerina spp.) cannot be correlated from one site to another. Several common species (e.g. Oridorsalis umbonatus and Globocassidulina subglobosa) range from late Eocene to Recent. First and last appearances are generally difficult to define precisely because many species are rare. For some species these datums differ from one site to another, but several datum levels are within 1 m.y. at all sites. First and last appearances are most numerous in two intervals, the late Eocene to early Oligocene (about 32 to 37 Ma) and the early to middle Miocene (about 13 to 18.5 Ma). Isotopic events occur within each of these periods of benthic faunal change, but the isotopic events have a shorter duration and start after the initiation of the changes in the fauna. Changes in deep-sea benthic faunal composition are not directly related to short-term oceanographic changes as expressed in isotopic records.
Accompanying wind measurements for bottle data of cruise A7/85 during the MRI-LDEO cooperative study
Resumo:
Chemical and mineralogical compositions of ferromanganese oxide coatings on rocks dredged from the New England Seamounts, the Sierra Leone Rise and the Mid-Atlantic Ridge near the Equator have been determined in an investigation of regional differences in Atlantic ferromanganese deposits. Most encrustations are clearly of hydrogenous origin, consisting mainly of todorokite and delta MnO2, but several recovered from the equatorial fracture zones may be hydrothermal accumulations. Differences in the chemistry of the water column and in growth rates of the ferromanganese coatings may be important in producing this regional contrast in composition. Fine-scale changes in element abundances within the encrustations indicate that the nature of the substrate has little influence on compositional variations.