533 resultados para 764
Resumo:
The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.
Resumo:
The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along transects under undeformed land-fast sea ice at Barrow, Alaska (March, May, and June 2010). The measurements were performed with a spectral radiometer mounted on a floating under-ice sled. The objective was to quantify the spatial variability of light transmittance through snow and sea ice, and to compare this variability along its seasonal evolution. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt causes as much relative spatial variability of light transmittance as the contrast of ponded and white ice during summer. Both before and after melt onset, measured transmittances fell in a range from one third to three times the mean value. In addition, we found a twentyfold increase of light transmittance as a result of partial snowmelt, showing the seasonal evolution of transmittance through sea ice far exceeds the spatial variability. However, prior melt onset, light transmittance was time invariant and differences in under-ice irradiance were directly related to the spatial variability of the snow cover.
Resumo:
Sites 759 through 764 were drilled during Ocean Drilling Program Leg 122 on the Exmouth and Wombat plateaus off northwest Australia, eastern Indian Ocean. Radiolarian recovery was generally poor due to unsuitable lithofacies. A few Quaternary radiolarian faunas were recovered from most of the sites. Rare and poorly preserved Oligocene and Eocene radiolarian faunas were recovered from Holes 760A, 761B, 761C, and 762B. Poorly preserved Cretaceous radiolarians occur in samples from Holes 761B, 762C, 763B, and 763C. Chert intervals from Cores 122-761B-28X, 122-761C-5R, and 122-761C-6R contain moderately well-preserved Cretaceous radiolarian faunas (upper Albian, mid- to upper Cenomanian, and mid-Albian, respectively). Rare fragments of Upper Triassic radiolarians were recovered from sections in Holes 759B, 760B, and 764A. The only well-preserved pre-Quaternary radiolarians are in lower and upper Paleocene faunas (Bekoma campechensis Zone) recovered from Site 761, Sections 122-761B-16X-1 to 122-761C-19X-CC. The composition of these faunas differs somewhat from that of isolated coeval Paleocene faunas from Deep Sea Drilling Project sites in the Atlantic, Gulf of Mexico, tropical Pacific, eastern Indian Ocean, and near Spain and North Africa, as well as from several on-land sites in North America, Cuba, and the USSR.