316 resultados para 7140-333


Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the landscape evolution and soil development in the loess area near Regensburg between approximately 6000-2000 yr BP (radiocarbon years), Eastern Bavaria. The focus is on the question how man and climate influenced landscape evolution and what their relative significance was. The theoretical background concerning the factors that controlled prehistoric soil erosion in Middle Europe is summarized with respect to rainfall intensity and distribution, pedogenesis, Pleistocene relief, and prehistoric farming. Colluvial deposits , flood loams, and soils were studied at ten different and representative sites that served as archives of their respective palaeoenvironments. Geomorphological, sedimentological, and pedological methods were applied. According to the findings presented here, there was a high asynchronity of landscape evolution in the investigation area, which was due to prehistoric land-use patterns. Prehistoric land use and settlement caused highly difIerenciated phases of morphodynamic activity and stability in time and space. These are documented at the single catenas ofeach site. In general, Pleistocene relief was substantially lowered. At the same time smaller landforms such as dells and minor asymmetric valleys filled up and strongly transformed. However, there were short phases at many sites, forming short lived linear erosion features ('Runsen'), resulting from exceptional rainfalls. These forms are results of single events without showing regional trends. Generally, the onset of the sedimentation of colluvial deposits took place much earlier (usually 3500 yr BP (radiocarbon) and younger) than the formation of flood loams. Thus, the deposition of flood loams in the Kleine Laaber river valley started mainly as a consequence of iron age farming only at around 2500 yr BP (radiocarbon). A cascade system explains the different ages of colluvial deposits and flood loams: as a result of prehistoric land use, dells and other minor Pleistocene landforms were filled with colluvial sediments. After the filling of these primary sediment traps , eroded material was transported into flood plains, thus forming flood loams. But at the moment we cannot quantify the extent ofprehistoric soil erosion in the investigation area. The three factors that controlled the prehistoric Iandscapc evolution in the Ioess area near Regensburg are as follows: 1. The transformation from a natural to a prehistoric cultural landscape was the most important factor: A landscape with stable relief was changed into a highly morphodynamic one with soil erosion as the dominant process of this change. 2. The sediment traps of the pre-anthropogenic relief determined where the material originated from soil erosion was deposited: either sedimentation took place on the slopes or the filled sediment traps of the slopes rendered flood loam formation possible. Climatic influence of any importance can only be documented as the result of land use in connection with singular and/or statistic events of heavy rainfalls. Without human impact, no significant change in the Holocene landscape would have been possible.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical behavior of the plate boundary fault zone is of paramount importance in subduction zones, because it controls megathrust earthquake nucleation and propagation as well as the structural style of the forearc. In the Nankai area along the NanTroSEIZE (Kumano) drilling transect offshore SW Japan, a heterogeneous sedimentary sequence overlying the oceanic crust enters the subduction zone. In order to predict how variations in lithology, and thus mechanical properties, affect the formation and evolution of the plate boundary fault, we conducted laboratory tests measuring the shear strengths of sediments approaching the trench covering each major lithological sedimentary unit. We observe that shear strength increases nonlinearly with depth, such that the (apparent) coefficient of friction decreases. In combination with a critical taper analysis, the results imply that the plate boundary position is located on the main frontal thrust. Further landward, the plate boundary is expected to step down into progressively lower stratigraphic units, assisted by moderately elevated pore pressures. As seismogenic depths are approached, the décollement may further step down to lower volcaniclastic or pelagic strata but this requires specific overpressure conditions. High-taper angle and elevated strengths in the toe region may be local features restricted to the Kumano transect.

Relevância:

20.00% 20.00%

Publicador: