128 resultados para 7038-214


Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the landscape evolution and soil development in the loess area near Regensburg between approximately 6000-2000 yr BP (radiocarbon years), Eastern Bavaria. The focus is on the question how man and climate influenced landscape evolution and what their relative significance was. The theoretical background concerning the factors that controlled prehistoric soil erosion in Middle Europe is summarized with respect to rainfall intensity and distribution, pedogenesis, Pleistocene relief, and prehistoric farming. Colluvial deposits , flood loams, and soils were studied at ten different and representative sites that served as archives of their respective palaeoenvironments. Geomorphological, sedimentological, and pedological methods were applied. According to the findings presented here, there was a high asynchronity of landscape evolution in the investigation area, which was due to prehistoric land-use patterns. Prehistoric land use and settlement caused highly difIerenciated phases of morphodynamic activity and stability in time and space. These are documented at the single catenas ofeach site. In general, Pleistocene relief was substantially lowered. At the same time smaller landforms such as dells and minor asymmetric valleys filled up and strongly transformed. However, there were short phases at many sites, forming short lived linear erosion features ('Runsen'), resulting from exceptional rainfalls. These forms are results of single events without showing regional trends. Generally, the onset of the sedimentation of colluvial deposits took place much earlier (usually 3500 yr BP (radiocarbon) and younger) than the formation of flood loams. Thus, the deposition of flood loams in the Kleine Laaber river valley started mainly as a consequence of iron age farming only at around 2500 yr BP (radiocarbon). A cascade system explains the different ages of colluvial deposits and flood loams: as a result of prehistoric land use, dells and other minor Pleistocene landforms were filled with colluvial sediments. After the filling of these primary sediment traps , eroded material was transported into flood plains, thus forming flood loams. But at the moment we cannot quantify the extent ofprehistoric soil erosion in the investigation area. The three factors that controlled the prehistoric Iandscapc evolution in the Ioess area near Regensburg are as follows: 1. The transformation from a natural to a prehistoric cultural landscape was the most important factor: A landscape with stable relief was changed into a highly morphodynamic one with soil erosion as the dominant process of this change. 2. The sediment traps of the pre-anthropogenic relief determined where the material originated from soil erosion was deposited: either sedimentation took place on the slopes or the filled sediment traps of the slopes rendered flood loam formation possible. Climatic influence of any importance can only be documented as the result of land use in connection with singular and/or statistic events of heavy rainfalls. Without human impact, no significant change in the Holocene landscape would have been possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basalts and oceanic andesites from the aseismic Ninetyeast Ridge display trachytic, vesicular and amygdaloidal textures suggesting a subaerial volcanic environment. The normative composition of the Ninetyeast Ridge ranges from olivine picriteto nepheline-normative alkaline basalt, suggesting a wide range of differentiation. This is further supported by the fractionation-differentiation trends displayed by transition metal trace elements (Ni, Cr, V and Cu). The Ninetyeast Ridge rocks are enriched in rare earth (RE) and large ion lithophile (LIL) elements and Sr isotopes (0.7043-0.7049), similar to alkali basalts and tholeiites from seamounts and islands, but different from LIL-element-depleted tholeiitic volcanic rocks of the recent seismic mid-Indian oceanic ridge. The constancy of 87Sr/86Sr ratios for basalts and andesites is compatible with a model involving fractional crystallization of mafic magma. The variation of 87Sr/86Sr ratios between 0.97 and 2.79 may possibly be explained in terms of a primordial hot mantle and/or chemically contrasting heterogeneous mantle source layers relatively undepleted in LIL elements at different periods in the geologic past. In general, the Sr isotopic data for rocks from different tectonic environments are consistent with a "zoning-depletion model" with systematically arranged alternate alkali-poor and alkali-rich layers in the mantle beneath the Indian Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multivariate analyses of latest Pliocene through Holocene benthic foraminifera from 61 samples from Deep-Sea Drilling Project (DSDP) Site 214, eastem Indian Ocean were carried out. The 46 highest ranked species were used in R-mode factor analysis which has enabled to the identification of three environmentally significant assemblages at Site 214. Assemblage 1 is characterized by Uvigerina hispido-costata, Osangularia culter , Gavelinopsis lobatulus, Cibicides wuellerstorfi and Karreriella baccata as principal species. This assemblage is inferred to reflect high-energy, well-oxygenated and probably low-organic carbon deep-sea environment at Site 214. Assemblage 2 is defined principally by Globocassidulina pacifica and U. proboscidea and is considered to indicate an organic carbon-rich environment which resulted from high surface productivity irrespective of dissolved oxygen content. Assemblage 3 is marked by Oridorsalis umbonatus, Textularia lythostrota, Hoeglundina elegans, Pyrgo murrhina, and Pullenia quinqueloba as principal species. This assemblage is inferred to indicate a low-organic carbon environment with high pore water oxygen concentration leading to better preservation of deep-sea sediments.