523 resultados para 7038-207
Resumo:
This study investigates the landscape evolution and soil development in the loess area near Regensburg between approximately 6000-2000 yr BP (radiocarbon years), Eastern Bavaria. The focus is on the question how man and climate influenced landscape evolution and what their relative significance was. The theoretical background concerning the factors that controlled prehistoric soil erosion in Middle Europe is summarized with respect to rainfall intensity and distribution, pedogenesis, Pleistocene relief, and prehistoric farming. Colluvial deposits , flood loams, and soils were studied at ten different and representative sites that served as archives of their respective palaeoenvironments. Geomorphological, sedimentological, and pedological methods were applied. According to the findings presented here, there was a high asynchronity of landscape evolution in the investigation area, which was due to prehistoric land-use patterns. Prehistoric land use and settlement caused highly difIerenciated phases of morphodynamic activity and stability in time and space. These are documented at the single catenas ofeach site. In general, Pleistocene relief was substantially lowered. At the same time smaller landforms such as dells and minor asymmetric valleys filled up and strongly transformed. However, there were short phases at many sites, forming short lived linear erosion features ('Runsen'), resulting from exceptional rainfalls. These forms are results of single events without showing regional trends. Generally, the onset of the sedimentation of colluvial deposits took place much earlier (usually 3500 yr BP (radiocarbon) and younger) than the formation of flood loams. Thus, the deposition of flood loams in the Kleine Laaber river valley started mainly as a consequence of iron age farming only at around 2500 yr BP (radiocarbon). A cascade system explains the different ages of colluvial deposits and flood loams: as a result of prehistoric land use, dells and other minor Pleistocene landforms were filled with colluvial sediments. After the filling of these primary sediment traps , eroded material was transported into flood plains, thus forming flood loams. But at the moment we cannot quantify the extent ofprehistoric soil erosion in the investigation area. The three factors that controlled the prehistoric Iandscapc evolution in the Ioess area near Regensburg are as follows: 1. The transformation from a natural to a prehistoric cultural landscape was the most important factor: A landscape with stable relief was changed into a highly morphodynamic one with soil erosion as the dominant process of this change. 2. The sediment traps of the pre-anthropogenic relief determined where the material originated from soil erosion was deposited: either sedimentation took place on the slopes or the filled sediment traps of the slopes rendered flood loam formation possible. Climatic influence of any importance can only be documented as the result of land use in connection with singular and/or statistic events of heavy rainfalls. Without human impact, no significant change in the Holocene landscape would have been possible.
Resumo:
Ocean Drilling Program (ODP) Sites 1257-1261 recovered thick sections of Upper Cretaceous-Eocene oceanic sediments on Demerara Rise off the east coast of Surinam and French Guiana, South America. Paleomagnetic and rock magnetic measurements of ~800 minicores established a high-resolution composite magnetostratigraphy spanning most of the Maastrichtian-Eocene. Magnetic behavior during demagnetization varied among lithologies, but thermal demagnetization steps >200°C were generally successful in removing present-day normal polarity overprints and a downward overprint induced during the ODP coring process. Characteristic remanent magnetizations and associated polarity interpretations were generally assigned to directions observed at 200°-400°C, and the associated polarity interpretations were partially based on whether the characteristic direction was aligned or apparently opposite to the low-temperature "north-directed" overprint. Biostratigraphy and polarity patterns constrained assignment of polarity chrons. The composite sections have a complete polarity record of Chrons C18n (middle Eocene)-C34n (Late Cretaceous).