331 resultados para 67-498A
Resumo:
Gas hydrates are icelike materials that form when specific conditions of temperature, pressure, and gas composition are simultaneously satisfied. Among the first descriptions of gas hydrates under natural conditions was that of Hammerschmidt (1940), who found them in pipelines used to transport natural gas. Milton (1976) indicates that conditions are suitable for the presence of gas hydrates in areas affected by permafrost and cites studies suggesting that large quantities of gas exist in hydrate form.
Resumo:
Heavy and light minerals were examined in 29 samples from Sites 494, 498, 499, 500, and 495 on the Deep Sea Drilling Project Leg 67 Middle America Trench transect; these sites represent lower slope, trench, and oceanic crust environments off Guatemala. All samples are Quaternary except those from Hole 494A (Pliocene) and Hole 498A (Miocene). Heavy-mineral assemblages of the Quaternary sediments are characterized by an immature pyroxene-amphibole suite with small quantities of olivine and epidote. The Miocene sediments yielded an assemblage dominated by epidote and pyroxene but lacking olivine; the absence of olivine is attributed to selective removal of the most unstable components by intrastratal solution. Light-mineral assemblages of all samples are predominantly characterized by volcanic glass and plagioclase feldspar. The feldspar compositions are compatible with andesitic source rocks and frequently exhibit oscillatory zoning. The heavy- and light-mineral associations of these sediments suggest a proximal volcanic source, most probably the Neogene highland volcanic province of Guatemala. Sand-sized components from Site 495 are mainly biogenic skeletons and volcanic glass and, in one instance (Section 495-5-3), euhedral crystals of gypsum.
Resumo:
Interstitial water chemistry has proved to be a sensitive indicator for early diagenetic reactions, particularly those related to organic matter oxidation. Downhole chemical variations in the pore waters from Deep Sea Drilling Project Holes 496 and 497 on the Middle America Trench slope off Guatemala are anomalous because both salinity and chlorinity show strong decreases to half the values of seawater, and d18O values become positive (maximum of about +2.5% at the bottom of the holes). These observations are explained in terms of dilution of pore waters after retrieval as a result of decomposition of the gas hydrates before removal of pore waters by shipboard squeezing techniques. In all holes, except Hole 495 (drilled in pelagic sediments), decomposition of organic matter leads to rapid sulfate depletion and subsequent methane generation. Associated with methane generation are large increases in alkalinity and dissolved ammonia. The latter component causes ion exchange reactions with clay minerals, which results in maxima in magnesium and perhaps potassium. At greater depths, as yet unidentified reactions cause the removal of magnesium. Especially in the deeper Trench Sites 499 and 500, rapid variations in calcium, magnesium, and alkalinity occur in turbidite sequences.
Resumo:
Heavy and light minerals were examined in 29 samples from Sites 494, 498, 499, 500, and 495 on the Deep Sea Drilling Project Leg 67 Middle America Trench transect; these sites represent lower slope, trench, and oceanic crust environments off Guatemala. All samples are Quaternary except those from Hole 494A (Pliocene) and Hole 498A (Miocene). Heavy-mineral assemblages of the Quaternary sediments are characterized by an immature pyroxene-amphibole suite with small quantities of olivine and epidote. The Miocene sediments yielded an assemblage dominated by epidote and pyroxene but lacking olivine; the absence of olivine is attributed to selective removal of the most unstable components by intrastratal solution. Light-mineral assemblages of all samples are predominantly characterized by volcanic glass and plagioclase feldspar. The feldspar compositions are compatible with andesitic source rocks and frequently exhibit oscillatory zoning. The heavy- and light-mineral associations of these sediments suggest a proximal volcanic source, most probably the Neogene highland volcanic province of Guatemala. Sand-sized components from Site 495 are mainly biogenic skeletons and volcanic glass and, in one instance (Section 495-5-3), euhedral crystals of gypsum.
Resumo:
Leg 67 sample sediments are mainly composed of biogenic carbonate and biogenic siliceous materials. Apart from calcite, crystallized minerals are scarce; however, they are better represented in sites near the continent and in all Quaternary sediments. These minerals are: quartz, feldspars, smectite, and, rarely, chlorite, dolomite, and zeolite.