94 resultados para 60 minute mean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Vernagtferner region has a long tradition of glaciological research performed by groups from Munich. It started in 1889, when Prof. Sebastian Finsterwalder from the Technical University in Munich produced the first map of a complete glacier based on terrestrial photogrammetry. Since then, numerous maps of the glacier have been made, describing the change in surface elevation for more than a century. These maps form the basis of the geodetic method of glacier mass balance determination, which provides volume changes as average data for the period between two surveys, i.e. typically for 10 years. Since the start of the glaciological method on Vernagtferner in 1964, annual as well as winter and summer mass balance data are available continuously. But only since 1973, the construction of the Vernagtbach station, approximately 1 km below the glacier margin at that time, provided the means to record a larger number of hydrological and meteorological parameters with a temporal resolution of typically 1 hour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first meteorological station in the Vernagtferner basin, called 'Gletschermitte' was run from 1968 to 1987. It was positioned on a small rock in the western part of the glacier at an elevation of 3078 m a.s.l. The coordinates were 46.868939° N (Latitude) and 10.802986° E (Longitude). The following parameters were recorded mainly during the summer months: Wind speed and wind direction, air temperature and humidity of the air and precipitation. The records of the first four parameters comprise hourly values from 1968 to 1986 /1987, daily sums of precipitation run from 1977 to 1987. All quantities were recorded on paper chart, i.e. 'Woelfle-Windschreiber' for the wind components, mechanically driven thermo-hygrographs (1968 to 1975) and 'BTW-Langzeit-Thermo-Hygrograph' (1977 to 1987) for temperature and humidity, Belfort analogue weighing gauge for precipitation. In 1976, air temperature was recorded on a Schenk paper chart recorder. In addition, photographs of the eastern part of Vernagtferner were taken once a day in summer between 1981 and 1986.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dataset contains measurements of river stage and discharge for one sites along the Akuliarusiarsuup Kuua River's northern tributary, with 30 minute temporal resolution between June 2008 and August 2013 This river is a tributary to the Watson River discharging into Kangerlussuaq Fjord by the town of Kangerlussuaq, Southwest Greenland. Additional data of water temperature, air pressure are also provided. Compared to version 1.0 of the dataset, this dataset used a total of 36 in situ discharge observations collected between 2008 and 2012 to construct the rating curve. Furthermore, data of Station AK-004-001 between 2010-09-06T11:30 to 2010-09-07T13:30 have been removed from version 2.0 because these values were likely caused by backflow when a jokulhlaup from a large glacier dammed lake caused increased water levels in the downstreams lake. Thus, data measured at AK-004-001 between 2010-09-06T11:30 to 2010-09-07T13:30 are not representative for the AK-004 catchment.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pressing scientific questions concerning the Greenland ice sheet's climatic sensitivity, hydrology, and contributions to current and future sea level rise require hydrological datasets to resolve. While direct observations of ice sheet meltwater losses can be obtained in terrestrial rivers draining the ice sheet and from lake levels, few such datasets exist. We present a new dataset of meltwater river discharge for the vicinity of Kangerlussuaq, Southwest Greenland. The dataset contains measurements of river stage and discharge for three sites along the Akuliarusiarsuup Kuua (Watson) River's northern tributary, with 30 minute temporal resolution between June 2008 and August 2010. Additional data of water temperature, air pressure, and lake water depth and temperature are also provided. Discharge data were measured at sites with near-ideal properties for such data collection. Regardless, high water bedload and turbulent flow introduce considerable uncertainty. These were constrained and quantified using statistical techniques, thereby providing a high quality dataset from this important site. The greatest data uncertainties are associated with streambed elevation change and measurements. Large portions of stream channels deepened according to statistical tests, but poor precision of streambed depth measurements also added uncertainty. Quality checked data are freely available for scientific use as supplementary online material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melt rate and surface temperature on the Greenland ice sheet are parameterized in terms of snow accumulation, mean annual air temperatur and mean July air temperature. Melt rates are calculated using positive degree-days, and firn warming (i.e. the positive deviation of the temperature at 10-15 m depth from the mean annual air temperature) is estimated from the calculated amount of refrozen melt water in the firn. A comparison between observed and calculated melt rates shows that the parameterization provides a reasonable estimate of the present ablation rates in West Greenland between 61°N and 76°N. The average equilibrium line elevation is estimated to be about 1150 m and 1000 m for West and East Greenland respectively, which is several hundred meter lower than previous estimates. However, the total annual ablation from the ice sheet is found to be about 280 km**3 of water per year which agrees well with most other estimates. The melt-rate model predicts significant melting and consequently significant firn warming even at the highest elevations of the South Greenland ice sheet, whereas a large region of central Greenland north of 70° N experiences little or no summer melting. This agrees with the distribution of the dry snow facics as given by BENSON (1962).