18 resultados para 46FR1990-2_200
Accompanying wind measurements for bottle data of cruise A2/90 during the MRI-LDEO cooperative study
Resumo:
The POSEIDON cruise POS298/2 was carried out by the Institute of Oceanography of the University of Hamburg. Members of the University of Venice and the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste were participating in the cruise. The project was aimed at gaining a deeper knowledge on the water mass transformations occurring in the southern Adriatic and western Ionian Sea. To obtain this result CTD profiles, lADCP profiles and water samples for oxygen and salinity were taken and analysed. The cruise had several objectives: 1. Identifying the routes and characteristics of the fraction of deep water in the Ionian Sea which was generated in the Adriatic Sea. 2. Quantifying the mixing of the deep water generated in the Adriatic Sea with the ambient water masses on its way southward. 3. Estimating the importance of the deep water generated in the Adriatic Sea for the ventilation of the eastern Mediterranean Sea.
Resumo:
Phase equilibria simulations were performed on naturally quenched basaltic glasses to determine crystallization conditions prior to eruption of magmas at the Mid-Atlantic Ridge (MAR) east of Ascension Island (7°11°S).The results indicate that midocean ridge basalt (MORB) magmas beneath different segments of the MAR have crystallized over a wide range of pressures (100-900MPa). However, each segment seems to have a specific crystallization history. Nearly isobaric crystallization conditions (100-300MPa) were obtained for the geochemically enriched MORB magmas of the central segments, whereas normal (N)-MORB magmas of the bounding segments are characterized by polybaric crystallization conditions (200-900MPa). In addition, our results demonstrate close to anhydrous crystallization conditions of N-MORBs, whereas geochemically enriched MORBs were successfully modeled in the presence of 0.4-1wt% H2O in the parental melts.These estimates are in agreement with direct (Fourier transform IR) measurements of H2O abundances in basaltic glasses and melt inclusions for selected samples. Water contents determined in the parental melts are in the range 0.04-0.09 and 0.30-0.55 wt% H2O for depleted and enriched MORBs, respectively. Our results are in general agreement (within ±200MPa) with previous approaches used to evaluate pressure estimates in MORB. However, the determination of pre-eruptive conditions of MORBs, including temperature and water content in addition to pressure, requires the improvement of magma crystallization models to simulate liquid lines of descent in the presence of small amounts of water. KEY WORDS: MORB; Mid-Atlantic Ridge; depth of crystallization; water abundances; phase equilibria calculations; cotectic crystallization; pressure estimates; polybaric fractionation