775 resultados para 38-0.45 µm carbonate fraction
Resumo:
Strontium, magnesium, oxygen, and carbon isotope profiles of the carbonate fraction of Hole 600C sediments support the lithologic and petrographic observations of extensive CaCO3 dissolution and recrystallization in the Pliocene basal section. Convective fluid flow through the sediments during the first 1 to 1.5 m.y. of the sedimentary history of these sediments may explain these observations.
Resumo:
Chemoherm carbonates, as well as numerous other types of methane seep carbonates, were discovered in 2004 along the passive margin of the northern South China Sea. Lithologically, the carbonates are micritic containing peloids, clasts and clam fragments. Some are highly brecciated with aragonite layers of varying thicknesses lining fractures and voids. Dissolution and replacement is common. Mineralogically, the carbonates are dominated by high magnesium calcites (HMC) and aragonite. Some HMCs with MgCO3 contents of between 30-38 mol%-extreme-HMC, occur in association with minor amounts of dolomite. All of the carbonates are strongly depleted in d13C, with a range from -35.7 to -57.5 per mil PDB and enriched in d18O (+ 4.0 to + 5.3 per mil PDB). Abundant microbial rods and filaments were recognized within the carbonate matrix as well as aragonite cements, likely fossils of chemosynthetic microbes involved in carbonate formation. The microbial structures are intimately associated with mineral grains. Some carbonate mineral grains resemble microbes. The isotope characteristics, the fabrics, the microbial structure, and the mineralogies are diagnostic of carbonates derived from anaerobic oxidation of methane mediated by microbes. From the succession of HMCs, extreme-HMC, and dolomite in layered tubular carbonates, combined with the presence of microbial structure and diagenetic fabric, we suggest that extreme-HMC may eventually transform into dolomites. Our results add to the worldwide record of seep carbonates and establish for the first time the exact locations and seafloor morphology where such carbonates formed in the South China Sea. Characteristics of the complex fabric demonstrate how seep carbonates may be used as archives recording multiple fluid regimes, dissolution, and early transformation events.
Resumo:
This paper presents data on trace elements (Sr, Mg, Na, K, Mn, Fe, Ni, Cr) and isotopes (13C, 18O) on the carbonate fraction of bulk sediments from the Coniacian to Paleocene samples of Hole 516F. Relationships of trace elements to mineralogy and stratigraphic position are discussed at length, with special emphasis on 1) the differences between Hole 516F and other oceanic sites, and 2) the transitions observed at the Cretaceous/Tertiary boundary. Isotope data are compared to those obtained in other localities of the same age. The sections show the same major 13C variations at the Cretaceous/Tertiary boundary, indicating that this event is a planetary phenomenon.