68 resultados para 357-M0076A
Resumo:
An evaluation has been made of the method of establishing the REE contents and patterns and Nd isotopic compositions of sea water over Cenozoic time from their record in the FeMn-oxide coatings of foraminiferal calcite. Using 0-60 Ma samples from the Rio Grande Rise (DSDP Site 357) it has been established that the REE contents of the coatings are generally similar to those of Recent samples. However, in the Cenozoic samples the surface coatings have been diagenetically modified under suboxic conditions resulting in a distinctly different REE pattern although the original 143Nd/144Nd ratios appear to have been preserved. The Nd isotopic curve for Cenozoic sea water in the S. Atlantic shows clear temporal trends, although these are not so extreme as to show 143Nd/144Nd ratios outside the range observed in modem sea water. With the principal exception of the oldest samples there is an approximate inverse relationship between the Nd and Sr isotopic compositions of the foraminifera. It is suggested that the changes reflect both global changes in the relative proportions of Nd and Sr derived from continental input and from the weathering of volcanic debris together with short term and local variations to which the Sr curve is insensitive, reflecting the different response times of the two elements to changes in oceanic input functions. The Nd isotope curve appears to be a potentially useful tracer of ocean palaeochemistry.
Resumo:
The evolution of calcareous dinoflagellate communities has been investigated for the latest Cretaceous to earliest Neogene interval of the mid-latitude South Atlantic. In doing so, the response of calcareous dinoflagellates to Cenozoic climatic change has been addressed for the first time. Trends in species composition and distribution patterns of wall types indicate significant changes which correlate with major palaeoenvironmental modifications. A first major shift concerning the relative abundance of species and wall types occurred across the Cretaceous-Tertiary boundary. The associations remained stable during the entire Paleocene and Eocene. Only in the late Eocene did a dramatic decrease in temperature cause a slight diversification. A second major shift in the abundance patterns occurred across the Eocene-Oligocene boundary. The early Miocene warming is possibly reflected in the distinct increase in relative abundance of one species. The assemblages of calcareous dinoflagellates evidently react to major climatic changes during the Cenozoic. These poorly investigated organisms may thus provide an important contribution to the understanding of earth's palaeoclimatic evolution.