597 resultados para 204-1251D
Resumo:
Acetate and hydrogen concentrations in pore fluids were measured in samples taken at seven sites from southern Hydrate Ridge (SHR) offshore Oregon, USA. Acetate concentrations ranged from 3.17 to 2515 µM. The maximum acetate concentrations occurred at Site 1251, which was drilled on a slope basin to the east of SHR at depths just above the bottom-simulating reflector (BSR) that marks the boundary of gas hydrate stability. Acetate maxima and localized high acetate concentrations occurred at the BSR at all sites and frequently corresponded with areas of gas hydrate accumulation, suggesting an empirical relationship. Acetate concentrations were typically at a minimum near the seafloor and above the sulfate/methane interface, where sulfate-reducing bacteria may consume acetate. Hydrogen concentrations in pressure core samples ranged from 16.45 to 1036 parts per million by volume (ppmv). In some cases, hydrogen and acetate concentrations were elevated concurrently, suggesting a positive correlation. However, sampling of hydrogen was limited in comparison to acetate, so any relationships between the two analytes, if present, were difficult to discern.
Resumo:
Isotopic characterization of carbon in the dissolved inorganic carbon (DIC) pool is fundamental for a wide array of scientific studies directly related to gas hydrate research. In order to generate integrated and internally consistent data of d13C of DIC in pore waters from Hydrate Ridge, we used the modern continuous flow technology of a GasBench II automated sampler interfaced to a gas source stable isotope mass spectrometer for the rapid determination (~80 samples/day) of d13C DIC in small-volume water samples. The overall precision of this technique is conservatively estimated to be better than ±0.15 per mil (1 sigma), which is similar to the precision of methods in current use. Here we present the data generated from Ocean Drilling Program Leg 204 pore water samples.
Resumo:
Sediments at the southern summit of Hydrate Ridge display two distinct modes of gas hydrate occurrence. The dominant mode is associated with active venting of gas exsolved from the accretionary prism and leads to high concentrations (15%-40% of pore space) of gas hydrate in seafloor or near-surface sediments at and around the topographic summit of southern Hydrate Ridge. These near-surface gas hydrates are mainly composed of previously buried microbial methane but also contain a significant (10%-15%) component of thermogenic hydrocarbons and are overprinted with microbial methane currently being generated in shallow sediments. Focused migration pathways with high gas saturation (>65%) abutting the base of gas hydrate stability create phase equilibrium conditions that permit the flow of a gas phase through the gas hydrate stability zone. Gas seepage at the summit supports rapid growth of gas hydrates and vigorous anaerobic methane oxidation. The other mode of gas hydrate occurs in slope basins and on the saddle north of the southern summit and consists of lower average concentrations (0.5%-5%) at greater depths (30-200 meters below seafloor [mbsf]) resulting from the buildup of in situ-generated dissolved microbial methane that reaches saturation levels with respect to gas hydrate stability at 30-50 mbsf. Net rates of sulfate reduction in the slope basin and ridge saddle sites estimated from curve fitting of concentration gradients are 2-4 mmol/m**3/yr, and integrated net rates are 20-50 mmol/m**2/yr. Modeled microbial methane production rates are initially 1.5 mmol/m**3/yr in sediments just beneath the sulfate reduction zone but rapidly decrease to rates of <0.1 mmol/m**3/yr at depths >100 mbsf. Integrated net rates of methane production in sediments away from the southern summit of Hydrate Ridge are 25-80 mmol/m**2/yr. Anaerobic methane oxidation is minor or absent in cored sediments away from the summit of southern Hydrate Ridge. Ethane-enriched Structure I gas hydrate solids are buried more rapidly than ethane-depleted dissolved gas in the pore water because of advection from compaction. With subsidence beneath the gas hydrate stability zone, the ethane (mainly of low-temperature thermogenic origin) is released back to the dissolved gas-free gas phases and produces a discontinuous decrease in the C1/C2 vs. depth trend. These ethane fractionation effects may be useful to recognize and estimate levels of gas hydrate occurrence in marine sediments.