92 resultados para 196-808
Resumo:
The subarctic North Pacific Ocean holds a large CO2 reservoir that is currently isolated from the atmosphere by a low-salinity layer. It has recently been hypothesized that the reorganization of these high-CO2 waters may have played a crucial role in the degassing of carbon dioxide to the atmosphere during the last deglaciation. This reorganization would leave some imprint on paleo-productivity records. Here we present 230Th-normalized biogenic fluxes from an intermediate depth sediment core in the Northwest Pacific (RC10-196, 54.7°N, 177.1°E, 1007 m) and place them within the context of a synthesis of previously-published biogenic flux data from 49 deep-sea cores north of 20°N, ranging from 420 to 3968 m water depth. The 230Th-normalized opal, carbonate, and organic carbon fluxes from RC10-196 peak approximately 13,000 calendar years BP during the Bølling/Allerød (B/A) period. Our data synthesis suggests that biogenic fluxes were in general lowest during the last glacial period, increased somewhat in the Northwest Pacific during Heinrich Event 1, and reached a maximum across the entire North Pacific during the B/A period. We evaluate several mechanisms as possible drivers of deglacial change in biogenic fluxes in the North Pacific, including changes in preservation, sediment focusing, sea ice extent, iron inputs, stratification, and circulation shifts initiated in the North Atlantic and North Pacific. Our analysis suggests that while micronutrient sources likely contributed to some of the observed changes, the heterogeneity in timing of glaciogenic retreat and sea level make these mechanisms unlikely causes of region-wide contemporaneous peaks in export production. We argue that paleo-observations are most consistent with ventilation increases in both the North Pacific (during H1) and North Atlantic (during B/A) being the primary drivers of increases in biogenic flux during the deglaciation, as respectively they were likely to bring nutrients to the surface via increased vertical mixing and shoaling of the global thermocline.
Resumo:
Shipboard laboratory index property data, shore-based consolidation tests, and in-situ stress and pore-pressure measurements are used in this study to constrain the stress conditions at ODP Site 808, Nankai Trough. Results of these tests are presented along with additional interpretations of porosity rebound and permeability. The sediment at Site 808 is highly affected by excess fluid pressures throughout the sediment column. Excess fluid pressure is severe below the major fault boundary, the décollement. The in-situ measurement of lateral stresses, which are shallow in the sediment section, confirms that the principal stress direction is rotated from a "normal" basin-type condition where the principal stress direction is vertical.
Resumo:
Microscopic studies reveal a predominance of terrestrial organic matter in sediments of Site 808. Terrestrial vitrinite and inertinite are more abundant (73% to 100%) than marine organic matter (alginite, 0% to 27%), which increases from open oceanic deposits of the Shikoku Basin sediments to sediments of the outer trench wedge. The abundance of terrestrial organic matter is also reflected through carbon isotope values of -23 per mil to -25.9 per mil. Mass accumulation rates of organic carbon are low in hemipelagic sediments of the Shikoku Basin (<0.2 g/cm**2/k.y.) but increase significantly in sediments of the Nankai Trench (0.2 to 1.7 g/cm**2/k.y.). Although the organic mass accumulation is high in sediments of the Nankai Trench, a comparison of sedimentation rates and total organic carbon suggests relative dilution of organic carbon through turbidite flows. Calculated marine paleoproductivity of organic carbon is low in sediments of the open ocean (Shikoku Basin) and increases closer to the shore (Nankai Trench). Thermal evolution of organic matter is obtained from vitrinite reflectance measurements. Two populations of vitrinites have been observed between 600 and 1234 mbsf. Reflectance values change with increasing depth and temperature in both groups of vitrinite (0.3% to 0.68% in group 1; 0.6% to 1% in group 2).
Resumo:
The principal aims of undertaking a shore-based bulk inorganic geochemical analysis of muds and mudstones from Site 808 were as follows: 1. Characterize the geochemical signature of the muds and mudstones at regular intervals downhole to sample and identify any changes in sediment type and provenance. 2. Integrate the inorganic geochemistry with the shipboard and more detailed land-based laboratory studies of the clay minerals. 3. Investigate any possible inorganic geochemical anomalies associated with the décollement.
Resumo:
The microfabric of 11 mudrock specimens from ODP Site 808 (Nankai accretionary prism) was quantitatively analyzed using X-ray texture goniometry and optical petrography. The objectives of the study were to learn about rock strain and to detect a component of bulk lateral shortening in the deformation of the mudstones. Strain evaluation is based on the predictions of March theory, and on distortions of initially homogeneous marker particle distributions (the Fry technique). The main results are as follows. The specimens underwent a strain path of progressive flattening, which is closely related to loss of pore space by vertical loading. A component of bulk lateral shortening is detectable in the top 550 mbsf at Site 808, but compared with the amount of uniaxial vertical shortening, its relative magnitude is probably small. Moreover, it cannot be said with confidence whether this is caused by toe contraction of the accretionary wedge or by gravitationally induced downslope movement of the sediment pile. The mudstones examined were deposited in a marine environment with an oxic bottom water column. Micropore collapse is an important fabric building mechanism, but below 400 mbsf its effects are at least partly overridden by recrystallization of smectite. We conclude that mud microfabrics are not very precise deformation gauges, but can be used for rough estimations of strain.
Resumo:
Cretaceous, Tertiary, and Quaternary sediments from Deep Sea Drilling Project Sites 164 and 196 (13°12' N, 161°31' W and 30°07' N, 148°34' E, respectively) were analyzed for major chemical elements and mineralogy. Sediments from these sites contain large proportions of authigenic minerals: mainly palygorskite, clinoptilolite and chert in the Cretaceous, and montmorillonite, phillipsite and chert in the Tertiary. The montmorillonite-phillipsite assemblage is thought to be derived from volcanic ash or glass, and the palygorskite-clinoptilolite assemblage is thought to be derived by reaction of biogenic silica with volcanic ash or glass or with montmorillonite and phillipsite. Both assemblages have generally moderate Ti/Al ratios, ranging from 0.026 to 0.047, so most of the palygorskite, clinoptilolite, montmorillonite and phillipsite could not be derived in situ from alteration of basaltic material. Plagioclase compositions suggest that the volcanic precursors were silicic or intermediate, but it is also possible that the sediments have been extensively fractionated by redistribution from nearby seamounts. Available data on other Late Cretaceous sediments in the Pacific were analyzed. Clinoptilolite and chert are present nearly everywhere where palygorskite is abundant; phillipsite is rare where palygorskite is abundant. It is suggested that increased water temperatures during the Cretaceous increased reaction rates and determined the alteration products.